京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中常见的七种回归分析以及R语言实现(三)---岭回归
我们在回归分析的时候,古典模型中有一个基本的假定就是自变量之间是不相关的,但是如果我们在拟合出来的回归模型出现了自变量之间高度相关的话,可能对结果又产生影响,我们称这个问题为多重共线性,多重共线性又分为两种,一种是完全多重共线性,还有一种是不完全多重共线性;
产生的原因有几个方面
1、变量之间存在内部的联系
2、变量之间存在共同的趋势等
造成的后果分两部分
完全多重共线性造成的后果
1、当自变量线性相关的时候,参数将无法唯一确定,参数的方差将趋近于无穷大,这时候无法使用最小二乘法
不完全多重共线性造成的后果
1、参数估计量的方差随着多重共线性的严重程度的增加而增加,但是参数是可以估计的
2、进行统计检验时容易删除掉重要解释变量
因为当多重共线性的时候容易造成自变量对因变量不显著,从模型中错误的剔除,这样容易删除重要解释变量的设定;
3、参数的置信区间明显扩大
因为由于存在多重共线性。我们的参数估计都有较大的标准差,因此参数真值的置信区间也将增大
那么我们怎么去判断一个模型上存在多重共线性呢?
根据经验表明,多重共线性存在的一个标志就是就模型存在较大的标准差,和较小的T统计量,如果一个模型的可决系数R^2很大,F检验高度限制,但偏回归系数的T检验几乎都不显著,那么模型很可能是存在多重共线性了。因为通过检验,虽然各个解释变量对因变量的共同影响高度显著,但每个解释变量的单独影响都不显著,我们无法判断哪个解释变量对被解释变量的影响更大
1、可以利用自变量之间的简单相关系数检验
这个方法是一个简便的方法,一般而言,如果每两个解释变量的简单相关系数一般较高,则可以认为是存在着严重的多重共线性
2、方差膨胀因子
在回归中我们用VIF表示方差膨胀因子
表达式 VIF=1/(1-R^2)
随着多重共线性的严重程度增强,方差膨胀因子会逐渐的变大,一般的当VIF>=10的时候,我们就可以认为存在严重多重共线性;
在R语言中car包中的vif()函数可以帮我们算出这个方差膨胀一找你
这就介绍这两个了,其实还有好多方法,大家可以可以私底下查,或者和我一起交流;
多重共线性的解决办法
因为存在多重共线性,我们还是拟合模型的;当然会有解决办法,这里我就介绍一下常用的方法岭回归;其他的方法也有,这里就不说了;
这里就说说大概的思想,具体推导的步骤这里就不写,有兴趣的可以网上查查;在多重共线性十分严重下,两个共线变量的系数之间的二维联合分布是一个山岭曲面,曲面上的每一个点对应一种残差平方和,点的位置越高,相应的残差平方和越小。因此山岭最高点和残差平方和的最小值相对应,相应的参数值便是参数的最小二乘法估计值,但由于多重共线性的存在最小二乘法估计量已经不适用,一个自然的想法就是应寻找其他的更适合的估计量,这种估计量既要具有较小的方差,又不能使残差平方和过分偏离其极小值。在参数的联合分布曲面上,能满足这种要求的点只能沿着山岭寻找,这就是岭回归法;
这个方法实质是牺牲了无偏性来寻求参数估计的最小方差性;
缺点:通常岭回归方程的R平方值会稍低于普通回归分析,但回归系数的显著性往往明显高于普通回归,在存在共线性问题和病态数据偏多的研究中有较大的实用价值
这里使用可能要使用到car和MASS,由于谢老师已经写了详细的过程,这里我就全程照搬了,偷了个懒,写个代码过程其实也有些累的;
1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题
cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26,
29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6,
9, 17, 22, 18, 4, 23, 9, 8), X4 = c(60, 52, 20, 47, 33, 22, 6, 44, 22, 26,
34, 12, 12), Y = c(78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1,
115.9, 83.8, 113.3, 109.4))
cement
## X1 X2 X3 X4 Y
## 1 7 26 6 60 78.5
## 2 1 29 15 52 74.3
## 3 11 56 8 20 104.3
## 4 11 31 8 47 87.6
## 5 7 52 6 33 95.9
## 6 11 55 9 22 109.2
## 7 3 71 17 6 102.7
## 8 1 31 22 44 72.5
## 9 2 54 18 22 93.1
## 10 21 47 4 26 115.9
## 11 1 40 23 34 83.8
## 12 11 66 9 12 113.3
## 13 10 68 8 12 109.4
lm.sol <- lm(Y ~ ., data = cement)
summary(lm.sol)
##
## Call:
## lm(formula = Y ~ ., data = cement)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.175 -1.671 0.251 1.378 3.925
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.405 70.071 0.89 0.399
## X1 1.551 0.745 2.08 0.071 .
## X2 0.510 0.724 0.70 0.501
## X3 0.102 0.755 0.14 0.896
## X4 -0.144 0.709 -0.20 0.844
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.45 on 8 degrees of freedom
## Multiple R-squared: 0.982, Adjusted R-squared: 0.974
## F-statistic: 111 on 4 and 8 DF, p-value: 4.76e-07
# 从结果看,截距和自变量的相关系数均不显著。
# 利用car包中的vif()函数查看各自变量间的共线情况
library(car)
vif(lm.sol)
## X1 X2 X3 X4
## 38.50 254.42 46.87 282.51
# 从结果看,各自变量的VIF值都超过10,存在多重共线性,其中,X2与X4的VIF值均超过200.
plot(X2 ~ X4, col = "red", data = cement)
接下来,利用MASS包中的函数lm.ridge()来实现岭回归。下面的计算试了151个lambda值,最后选取了使得广义交叉验证GCV最小的那个。
library(MASS)
##
## Attaching package: 'MASS'
##
## The following object is masked _by_ '.GlobalEnv':
##
## cement
ridge.sol <- lm.ridge(Y ~ ., lambda = seq(0, 150, length = 151), data = cement,
model = TRUE)
names(ridge.sol) # 变量名字
## [1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB"
## [9] "kLW"
ridge.sol$lambda[which.min(ridge.sol$GCV)] ##找到GCV最小时的lambdaGCV
## [1] 1
ridge.sol$coef[which.min(ridge.sol$GCV)] ##找到GCV最小时对应的系数
## [1] 7.627
par(mfrow = c(1, 2))
# 画出图形,并作出lambdaGCV取最小值时的那条竖直线
matplot(ridge.sol$lambda, t(ridge.sol$coef), xlab = expression(lamdba), ylab = "Cofficients",
type = "l", lty = 1:20)
abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
# 下面的语句绘出lambda同GCV之间关系的图形
plot(ridge.sol$lambda, ridge.sol$GCV, type = "l", xlab = expression(lambda),
ylab = expression(beta))
abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
par(mfrow = c(1, 1))
# 从上图看,lambda的选择并不是那么重要,只要不离lambda=0太近就没有多大差别。
# 下面利用ridge包中的linearRidge()函数进行自动选择岭回归参数
library(ridge)
mod <- linearRidge(Y ~ ., data = cement)
summary(mod)
##
## Call:
## linearRidge(formula = Y ~ ., data = cement)
##
##
## Coefficients:
## Estimate Scaled estimate Std. Error (scaled) t value (scaled)
## (Intercept) 83.704 NA NA NA
## X1 1.292 26.332 3.672 7.17
## X2 0.298 16.046 3.988 4.02
## X3 -0.148 -3.279 3.598 0.91
## X4 -0.351 -20.329 3.996 5.09
## Pr(>|t|)
## (Intercept) NA
## X1 7.5e-13 ***
## X2 5.7e-05 ***
## X3 0.36
## X4 3.6e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Ridge parameter: 0.01473, chosen automatically, computed using 2 PCs
##
## Degrees of freedom: model 3.01 , variance 2.84 , residual 3.18
# 从模型运行结果看,测岭回归参数值为0.0147,各自变量的系数显著想明显提高(除了X3仍不显著)
最后,利用Lasso回归解决共线性问题
library(lars)
## Loaded lars 1.2
x = as.matrix(cement[, 1:4])
y = as.matrix(cement[, 5])
(laa = lars(x, y, type = "lar")) #lars函数值用于矩阵型数据
##
## Call:
## lars(x = x, y = y, type = "lar")
## R-squared: 0.982
## Sequence of LAR moves:
## X4 X1 X2 X3
## Var 4 1 2 3
## Step 1 2 3 4
# 由此可见,LASSO的变量选择依次是X4,X1,X2,X3
plot(laa) #绘出图数据分析培训
summary(laa) #给出Cp值
## LARS/LAR
## Call: lars(x = x, y = y, type = "lar")
## Df Rss Cp
## 0 1 2716 442.92
## 1 2 2219 361.95
## 2 3 1918 313.50
## 3 4 48 3.02
## 4 5 48 5.00
# 根据课上对Cp含义的解释(衡量多重共线性,其值越小越好),我们取到第3步,使得Cp值最小,也就是选择X4,X1,X2这三个变量
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16