
数据分析中常见的七种回归分析以及R语言实现(一)--简单线性模型
刚刚学习数据分析的人应该知道回归分析是作为预测用的一种模型,它主要是通过函数来表达因变量(连续值)和自变量变量的关系,通俗的来说就是Y和X的关系通过公式表达出来;这样能够表明因变量和自变量之间的显著关系并且是函数关系,还可以表明多个自变量对一个因变量的影响强度,回归分析主要运用在预测分析上,虽然说是预测,但是有时候我们的回归模型只是被用来解释现场,并不需要去预测,例如,科学家猜想人的体重和某种特定的食物消耗有关;
1、线性回归
在古典的线性回归模型中是要满足几个假定:
A假设自变量和因变量存在线性关系,具体的说就是假设因变量Y,是一些自变量X1,X2,..,XN的一个线性函数它的表达式
B零均值假定,就是假定回归线通过X与Y的条件均值组成的点;
C同方差假定,就是各个随机误差项的离散程度是相同的,也就是说对于每个X,随机项相对均值的分散程度是相同
D无自相关,就是随机扰动项之间是互不相关的,互补影响,也就是说随机扰动项是完全随机分布的
E因变量和扰动项是完全不相关的假定;
F扰动项正态性假定,就是假定扰动项服从均值为零,方差为司格马的正太分布
其中回归模型的表达式写法如下
其中e是随机扰动项,也有写法是这样,Y=a+bX+e,其中a是截距项,b是斜率,e是随机扰动项;
参数最优---最小二乘法
竟然存在参数,那么如何获取到最佳的参数呢,简单线性模型使用的普通最小二乘法,这里就不写明写详细步骤了,这个可以利用搜索引擎查的得到,我就说说它的主要思想就好,因为我们在拟合过程的时候我们要使回归线尽量靠近所有的样本点,这时候我们就要使它们残差尽量小,因为残差是有负有正,所以我们就采用平方去处理,采用平方和最小原则,通过求导,使其导数为零,求解得到最优的参数,这样就能够使回归模型应该使所有观察值的残差平方和最小;大致就是这样,文字描述有些吃力,有什么问题可以评论一起交流
这里我使用的我最近读和做笔记的R语言核心技术手册的包nutshell中的team.batting.00to08数据,这个数据是2000年到2008年棒球队的数据,我们想要看看棒球队的得分和每个变量的关系;
载入数据
library(nutshell)
data("team.batting.00to08")
查看数据的前六行
这就说明了数据已经被我们完全的载入进来了,也知道有多少个变量以及变量的名字,这时候我们要大体的知道一下大体的概括,这时候使用的summary()函数
summary(team.batting.00to08)
在棒球中RUNS就是球队的得分,时间是从2000年到2008年等
这时候想看看各个变量之间相关性如何
,粗劣的使用cor函数得到它们之间的相关系数矩阵,因为数据框存在字符,所以我们要提出第一第二列
cor(team.batting.00to08[,3:10])
大致可以判断的出来得分和跑动距离和全垒打(homerus)相关系数较大;
这里我们经常使用R语言里面的Lm函数去拟合以上变量,然后得到模型,然后使用summary()函数打印更多关于模型的信息
runs.lm <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies+stolenbases+caughtstealing,data=team.batting.00to08)
summary(runs.lm)
从上图结果可以知道,R的可决系数是0.9114,模型F值较大,通过显著性检验,其中变量caughtstealing和stolenbases和runs不显著的关系,这个需要剔除;
我们可以手动剔除也可以使用step函数自动剔除
runs.lm_a <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies,data=team.batting.00to08)
runs.lm_b<-step(runs.lm)
这个就讲到这里,这个下面几篇文章会讲到用什么方法得到这样的结果
参考文献代码
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30