京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言XML格式数据导入与处理
数据解析
XML是一种可扩展标记语言,它被设计用来传输和存储数据。XML是各种应用程序之间进行数据传输的最常用的工具。它与Access,Oracle和SQL Server等数据库不同,数据库提供了更强有力的数据存储和分析能力,例如:数据索引、排序、查找、相关一致性等,它仅仅是存储数据。事实上它与其他数据表现形式最大的不同是:它极其简单,这是一个看上去有点琐细的优点,但正是这点使它与众不同。
针对XML格式数据,R语言XML包可以对其进行数据导入与处理,详见下面的案例说明。
案例1
直接输入一段标记语言文本,使用XML包解析。
library(XML)
tt =
'<x>
<a>text</a>
<b foo="1"/>
<c bar="me">
<d>a phrase</d>
</c>
</x>'
doc = xmlParse(tt)
xmlToList(doc)
# use an R-level node representation
doc = xmlTreeParse(tt)
xmlToList(doc)
案例2
导入已有的xml格式数据并处理,本案例用到的是手机通讯录xml数据,按如下步骤操作:
#读取xml格式数据并解析
xmlfile=xmlParse(file.choose(),encoding="UTF-8")
class(xmlfile)
#形成根目录列表数据
xmltop = xmlRoot(xmlfile)
class(xmltop) #查看类
xmlName(xmltop) #查看根目录名
xmlSize(xmltop) #查看根目录总数
xmlName(xmltop[[1]]) #查看子目录名
# 查看第一个子目录
xmltop[[1]]
# 查看第二个子目录
xmltop[[2]]
#子目录节点
xmlSize(xmltop[[1]]) #子目录节点数
xmlSApply(xmltop[[1]], xmlName) #子目录节点名
xmlSApply(xmltop[[1]], xmlAttrs) #子目录节点属性
xmlSApply(xmltop[[1]], xmlSize) #子目录节点大小
#查看第一个子目录的第一个节点
xmltop[[1]][[1]]
#查看第一个子目录的第二个节点
xmltop[[1]][[2]]
#第二个子目录
xmltop[[2]][[1]]
xmltop[[2]][[2]]
xmltop[[1]][[3]][[1]][[1]] #查看联系人电话
xmltop[['Contact']][['PhoneList']][[1]][[1]] #第二种方式
getNodeSet(xmltop, "//Contact/PhoneList")[[1]][[1]][[1]] #第三种方式
xmltop[[1]][[3]][[1]][[1]] = 13717232323 #更改联系人电话
xmltop[[1]][[1]][[1]]= "zhangsan "#更改联系人姓名
#保存
saveXML(xmltop, file="out.xml",encoding="UTF-8")
xml格式转dataframe
按如下步骤操作:
xmlToDataFrame(xmlfile) #第一种方式,直接用xmlToDataFrame()函数
library("plyr") #第二种方式,数据格式处理专用包plyr
MyContact=ldply(xmlToList(file.choose()), data.frame) #先转成list,再转dataframe
View(MyContact)
# 查看联系方式
MyContact[,c("Name" ,"PhoneList.Phone.text")]
# 联系方式保存
write.csv(MyContact, "MyContact.csv", row.names=FALSE)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28