京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言XML格式数据导入与处理
数据解析
XML是一种可扩展标记语言,它被设计用来传输和存储数据。XML是各种应用程序之间进行数据传输的最常用的工具。它与Access,Oracle和SQL Server等数据库不同,数据库提供了更强有力的数据存储和分析能力,例如:数据索引、排序、查找、相关一致性等,它仅仅是存储数据。事实上它与其他数据表现形式最大的不同是:它极其简单,这是一个看上去有点琐细的优点,但正是这点使它与众不同。
针对XML格式数据,R语言XML包可以对其进行数据导入与处理,详见下面的案例说明。
案例1
直接输入一段标记语言文本,使用XML包解析。
library(XML)
tt =
'<x>
<a>text</a>
<b foo="1"/>
<c bar="me">
<d>a phrase</d>
</c>
</x>'
doc = xmlParse(tt)
xmlToList(doc)
# use an R-level node representation
doc = xmlTreeParse(tt)
xmlToList(doc)
案例2
导入已有的xml格式数据并处理,本案例用到的是手机通讯录xml数据,按如下步骤操作:
#读取xml格式数据并解析
xmlfile=xmlParse(file.choose(),encoding="UTF-8")
class(xmlfile)
#形成根目录列表数据
xmltop = xmlRoot(xmlfile)
class(xmltop) #查看类
xmlName(xmltop) #查看根目录名
xmlSize(xmltop) #查看根目录总数
xmlName(xmltop[[1]]) #查看子目录名
# 查看第一个子目录
xmltop[[1]]
# 查看第二个子目录
xmltop[[2]]
#子目录节点
xmlSize(xmltop[[1]]) #子目录节点数
xmlSApply(xmltop[[1]], xmlName) #子目录节点名
xmlSApply(xmltop[[1]], xmlAttrs) #子目录节点属性
xmlSApply(xmltop[[1]], xmlSize) #子目录节点大小
#查看第一个子目录的第一个节点
xmltop[[1]][[1]]
#查看第一个子目录的第二个节点
xmltop[[1]][[2]]
#第二个子目录
xmltop[[2]][[1]]
xmltop[[2]][[2]]
xmltop[[1]][[3]][[1]][[1]] #查看联系人电话
xmltop[['Contact']][['PhoneList']][[1]][[1]] #第二种方式
getNodeSet(xmltop, "//Contact/PhoneList")[[1]][[1]][[1]] #第三种方式
xmltop[[1]][[3]][[1]][[1]] = 13717232323 #更改联系人电话
xmltop[[1]][[1]][[1]]= "zhangsan "#更改联系人姓名
#保存
saveXML(xmltop, file="out.xml",encoding="UTF-8")
xml格式转dataframe
按如下步骤操作:
xmlToDataFrame(xmlfile) #第一种方式,直接用xmlToDataFrame()函数
library("plyr") #第二种方式,数据格式处理专用包plyr
MyContact=ldply(xmlToList(file.choose()), data.frame) #先转成list,再转dataframe
View(MyContact)
# 查看联系方式
MyContact[,c("Name" ,"PhoneList.Phone.text")]
# 联系方式保存
write.csv(MyContact, "MyContact.csv", row.names=FALSE)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17