
1 决策树算法(Decision Tree)是从训练数据集中归纳出一组分类规则的过程。
实际操作中,与训练数据集不相矛盾的决策树可能有多个,也可能一个都没有;理想情况是找到一个与训练数据矛盾较小的决策树,同时也具有良好的泛化能力。
2 决策树结构:
有向边
节点
-内部节点: 数据的特征
-叶节点:数据的类别
决策树准则:每个实例都被一条路径覆盖,且仅被一条路径覆盖
3 决策树算法过程
特征选择
决策树生成过程就是划分数据集的过程,合适地选取特征能帮助我们将数据集从无序数据组织为有序;
有很多方法可以划分数据集,决策树算法根据信息论来度量信息;
信息论中有很多概念,不同的决策树生成算法使用不同的信息论概念来进行特征选择。
决策树生成
有诸如ID3, C4.5, CART等算法用于生成决策树;
ID3和CART4.5的差别在于用于特征选择的度量的不同
-ID3使用信息增益进行特征选择
-C4.5使用信息增益比进行特征选择
-以上两个算法流程:迭代的寻找当前特征中最好的特征进行数据划分,直到所有特征用尽或者划分后的数据的熵足够小。
ID3核心思想:信息增益越大说明该特征对于减少样本的不确定性程度的能力越大,也就代表这个特征越好。
C4.5核心思想:某些情况(比如按照身份证号、信用卡号、学号对数据进行分类)构造的树层数太浅而分支又太多,而这样的情况对数据的分类又往往没有意义,所以引入信息增益比来对分支过多的情况进行适当“惩罚”。具体情景解释可见这篇博客
CART我还没了解过,暂不介绍
4 决策树生成算法得到的树对训练数据的分类很准确,但对未知数据的分类却没那么准确,容易过拟合;因为决策树考虑的特征太多,构建得太复杂。
所以我们需要对决策树进行剪枝:从已生成的树上裁掉一些子树或叶节点,并将其根节点或父节点作为新的叶节点,以此简化树。
剪枝算法很多,这里引入一种简单的:极小化决策树整体的损失函数。
设树 T 的叶节点个数为 |T|, t 是树 T 的叶节点,该叶节点有Nt
个样本点,其中 k 类的样本点有Ntk个, k = 1,2,…,k, Ht(T)是叶节点 t 上的经验熵,α≥0
为参数,决策树的损失函数可定义如下
而经验熵为
其中,为了简洁,令
所以,上面的损失函数可以记为
各个符号定义如下:
C(T) 表示模型对训练数据的预测误差,即拟合程度
|T| 表示模型复杂度
α
控制以上两者之间的平衡
当α
确定时,树越大,与训练数据的拟合就越好,C(T)越小,但是树的复杂度也会上升,|T| 上升;而树越小,树的复杂度就越低,|T| 越小,但往往和训练数据的拟合程度不好,C(T) 又会上升
较大的α
使得生成较简单的树,较小的α使得生成较复杂的树,当α=0
,就完全不考虑树的复杂度了,相当于不进行剪枝操作
决策树生成只考虑提高信息增益来更好拟合训练数据,但决策树剪枝则通过优化损失函数来减少树的复杂度;可以说决策树生成学习的是局部模型,而决策树剪枝学习的是整体模型
剪枝算法流程
计算每个节点的经验熵
递归地从树的叶节点向上回缩:设一组叶节点
回缩到父节点前后的整体树分别是TB
和TA,其对应的损失函数值分别是Cα(TB)和Cα(TA)
,如果
那么将父节点变为新的叶节点,即剪枝
重复执行步骤2,直到不能再继续为止,得到损失函数最小的子树Tα
5
代码部分,先挖个坑。。。过段时间回来填
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22