
CDA持证人简介:
程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等大厂担任产品经理。
学习入口:https://edu.cda.cn/goods/show/3881?targetId=6832&preview=0
人力驱动广告投放:以购买便宜流量为例,商务发现便宜流量后,需通知运营进行试投放,运营分析后找财务申请资金,投放后还要分析效果并写报告,过程繁琐,依赖个人且效率低,易出现沟通成本高、决策风险大等问题。
数据驱动广告投放:任何公司投流,都一定要搭建流量监控体系,自动监控流量报价,发现便宜流量后自动进行小流量试投放,依据 ROI 选择最佳渠道并自动投放,同时利用人工智能准备物料,最后自动汇总结果,相比人力驱动更加稳定、高效,经验可继承。
北极星指标:数据驱动业务的前提是目标可量化且可驱动,不同产品或公司的北极星指标不同,如社交平台关注活跃用户数,美团在一定阶段更注重订单完成数。确定北极星指标后,数据可依据该指标进行决策,明确业务重点方向。
业务流程模式化:业务流程一定要总结、通用且可复用,以电商订单处理流程为例,各环节都要固化,数据才能在相应环节发挥决策作用,比如选择快递公司时可依据用户偏好和购买物品进行决策。同时,业务流程并非一成不变,要根据实际情况优化,如拼多多简化购物流程,如何判断流程是否模式化?就看新人能否依据文档完成工作来判断
搭建原因:以腾讯体育为例,不同业务如足球会员、篮球会员充值,在数据处理上存在大量重复工作,数据平台可将数据加工成半成品,提高数据处理效率,减少重复劳动。
平台分层:数据平台包括数据采集,收集用户行为数据、融合第三方数据;数据清洗包括处理脏数据,进行关联转化备份;数据处理,即可视化分析、建立决策模型;比如依据历史广告投放数据决定是否再次购买某平台流量和数据应用,提供决策建议、异常报警、自助分析工具等。
数据分工问题:数据归属不明确,业务部门和数据中台可能因数据所有权产生矛盾。解决方案是数据共有,业务部门和数据中台都有权获取所需数据,避免数据垄断。
资源问题:数据中台可能因资源有限拒绝业务部门的数据需求。解决办法是支持共建,开放数据接口,让业务部门在紧急时可自行获取数据。
算法结果可解释性问题:算法团队提供的预测结果可能难以解释,导致与业务部门产生矛盾。双方需协商确定是注重可解释性还是效果,若注重可解释性,算法提供简单模型但不负责准确率;若注重效果,算法需为结果负责。
数据安全问题:数据中台存在数据安全风险,如员工可能获取并泄露敏感数据。解决措施包括建立审批流,限制人员访问超出权限的数据;个人尽量不接触原数据,通过结果数据实现业务需求;对部分数据进行脱敏处理,如隐藏手机号中间几位。
目标用户定位:通过白盒化和黑盒化两种方式确定目标用户,白盒化即依据用户经济条件、性别等可解释信息,如盒马典型用户为 40 岁以上经济条件较好、掌管买菜大权的女性,但上海男性用户在盒马消费也较多。黑盒化指利用人格算法,虽不可解释但能筛选出精准用户。
转化路径设计:盒马门店选址都是在潜在用户集中地,通过发券鼓励线上购买,之后利用短信精准触达附近潜在用户;也加大地推,依据数据选择潜力小区摆摊,提高拉新效果,且数据可助力经验复制到新城市。
数据处理方法:介绍潜在用户模型,依据用户特征扩大潜在用户池;通过数据关联,如设备 ID、邮箱地址等判断多账号是否属于同一用户。
业务数据分析是CDA数据分析师一级的重要考点。
项目背景与问题:国企部门开服务点涉及多部门,规划部、考察部和选址部领导希望开店,对外洽谈商务可能因租金问题有异议,导致决策困难。
数据驱动解决方案:分析各部门痛点,为领导提供决策数据(如点位人流量、潜在用户数量等),为商务提供数据支持以申请租金调整,解决各方问题,赢得信任,促进合作。
程靖老师详细解读数据驱动业务本质,对比人力驱动的弊端,强调北极星指标和业务流程模式化的重要性。深入探讨数据平台搭建、作用、面临的问题及解决办法,并分享 C 端盒马拉新和 B 端国企服务点选址的实战案例,助力同学们在工作学习中更好地运用数据推动业务创新发展。
学习入口:https://edu.cda.cn/goods/show/3881?targetId=6832&preview=0
如果大家想听程老师完整版分享视频,可以微信扫码免费学习。同时,也期待大家持续关注 CDA 持证人的后续活动,获取更多专业知识和行业经验~
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10