
相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这里面不仅要用到python,还要用到数据分析的方法论,对于只用过excel的同学来说,这无疑是太难了,事到临头,再重头去学,无疑是个很漫长的过程,而我正好又懒癌复发了……。
不要急,下面就给大家介绍一款工具,可以通过自然语言的方式,把你的分析需求告诉它,它就能帮你实现代码的生成,数据分析方法的运用。它就是字节跳动最新发布的一款工具—Trae。
Trae是一款AI与传统IDE结合的工具,可以根据使用自然语言提出的需求,自动转化成代码后执行,实现需求-结果之间的零技术门槛的跨越。
下面我们先介绍一下它的安装部署
1)请先安装python解释器及开发工具后,再安装配置trae,因为单独安装python解释器和开发工具,过程比较繁琐,建议安装anaconda进行傻瓜式安装,具体可参考如下链接
anaconda安装过程:https://blog.csdn.net/yoggieCDA/article/details/147205853
2)跳过注册过程
3)下载anaconda安装包
4)参考如下链接,进行anaconda安装:
https://blog.csdn.net/yoggieCDA/article/details/147205853
1)在Builder模式下,输入提示词:配置python环境。
2)选择一个文件夹,以用来存放项目文件
3)配置虚拟环境
4)如出现以下提示,请按标识进行操作,选择安装好的python解释器
5)在提示词输入框中,输入:“激活虚拟环境”并回车执行
6)安装python开发工具及数据分析相关的包
7)环境配置成功
完成配置成功以后,让我们小试牛刀吧,
下面我们将用两个案例来带领大家快速上手这款工具。
数据分析工作中,常常会遇到多表合并为一张表的情况,如历年的销售数据,各月份的销售数据等,以往多张表的合并,要在python中实现,需要大家编写代码,有一定的编程基础。
现有如下几张数据表,记录了不同年份,不同区域市场的销售金额及利润情况,现需要多张表合并为一张表。
角色:我是一名数据分析师,经常使用python做数据整合、清理和可视化问题。
背景描述:本文件夹目录下有两个子文件夹,分别是“原始数据”子文件夹和“整合数据”子文件夹。
任务:
注意事项:
执行结果:
从这个案例我们可以看出数据分析的很多环节,都可以用AI来提高效率,节省你宝贵的时间和精力。大家不妨先思考这样一个问题:平时你做数据分析流程步骤是怎样的?在我看来,数据分析基本有这样5个环节:
数据分析是从明确问题和理解数据开始的,接着对数据清洗,比如说处理缺失值、调整数据格式等等,然后使用合适的数据分析方法,对数据展开分析,最后将数据结果进行可视化,直观的展示数据分析的结论这就是一套完整的数据分析工作流程,那么,现在AI来了以后,数据分析的这5个环节发生变化了吗?
并没有,可能分析的手法变了,比如过去清洗数据,要熟练的掌握Excel各种函数,现在可以通过提示词让AI来辅助完成。但是,数据分析的这5个环节一个也没少,所以大家不要只热衷于追逐新冒出来的各种AI工具,关键是要透彻掌握数据分析的底层逻辑。CDA数据分析师一级里讲解了数据分析方法、基本的流程、业务数据分析等。
再举个例子,某行信用卡中心需根据资金使用情况,进行资金使用量的预测,以提前准备适当的现金,以往的资金预测需要使用python进行,会用到建模等方法,现有了AI,请尝试使用AI辅助相应技术的实现。
提示词:
我是一名数据分析师,经常使用python做数据整合、清理、可视化、时间序列分析、数据挖掘的问题。
背景描述:本文件夹目录下有一个“信用卡消费额_含节日.xlsx”文件。
任务:
执行结果
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11