
Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢?
今天给大家介绍两种通过AI做Excel数据分析的方法,帮你快速实现整理数据、分析数据、制作图表等数据分析任务。
ChatExcel是一款基于AI的Excel处理工具,用户只需通过自然语言输入指令,即可完成数据的分析、处理和可视化。
访问ChatExcel官网(ChatExcel官网),点击“免费试用”,上传需要处理的Excel文件。支持的文件格式包括csv、xls、xlsx等。
在操作页面的输入框中,上传电子表格并输入指令(用自然语言描述你的需求。)
表格上传后,我们只需要轻松的在右边的对话框中输入我们想要问的问题,或者我们想让AI帮我们处理的问题,
比如我们想让AI 帮我们把总分列计算出来并更新到表格里面:
可以看到,AI分分钟就帮我们把表格的总分列计算出来了。
ChatExcel会自动分析数据,执行相应的操作,并生成结果。你可以查看生成的图表、分析报告,或者下载处理后的表格。
可以说非常高效率,哪怕你是一个excel小白,也能利用AI工具也能轻松做出炫酷的excel表格内容。
ChatExcel可以轻松完成各种数据计算,包括求和、求平均值、多条件求和等。
例如:
你可以通过自然语言指令筛选和排序数据。
例如:
ChatExcel支持生成多种图表,如柱状图、折线图、饼图等。
例如:
ChatExcel可以同时处理多个表格,支持多表合并、拆分、对比和分析。
例如:
ChatExcel能够生成详细的数据分析报告,涵盖对比分析、统计分析、相关性分析等多种分析方式。
例如:
同时,ChatExcel还能进行预测分析,根据历史数据预测未来的趋势,为用户的决策提供有力的支持。它是一款极具创新性的数据分析工具,强烈建议大家利用起来。
Ask Excel 是一款强大的 AI 数据分析工具,能够通过自然语言处理简化 Excel 数据分析和报告生成过程,适合学生、研究人员和商业人士使用。
Ask Excel各方面都表现比较出色, 其核心功能主要分为六个方面,具体如下:
Ask Excel 采用先进的智能算法,能够自动识别数据中的模式和趋势。它可以对数据进行分类、汇总、筛选等操作,为用户提供更深入的数据分析结果。
其具体操作步骤如下:
访问 Ask Excel 官网(AskExcel官网)。注册并登录账户,下载并安装 Ask Excel 插件。
打开 Excel 文件,点击 Ask Excel 插件按钮。选择需要分析的表格或数据区域,点击“上传”。
当用户导入表格数据后,Ask Excel 能够快速自动分析数据信息。它可以理解自然语言提问。它可以生成直观的图表,如柱状图、折线图、饼图等可视化内容,帮助用户快速理解数据特征。
对于包含大量文本数据的表格,Ask Excel 也能进行有效的文本分析,提取关键信息,突出显示重要内容。
自然语言提问:在 Ask Excel 的输入框中,用自然语言描述你的需求。
例如:
“计算2023年销售额超过100万的地区数量”。
“生成各地区2023年销售额的柱状图”。
“分析2023年销售额与2022年的变化趋势”。
Ask Excel 会自动解析问题,并在 Excel 中生成相应的结果或图表。
输入指令:“生成包含关键发现和见解的专业报告”。Ask Excel 会自动生成包含文字描述、数据表格和图表的报告。
完成相关操作后,只需点击页面右上方的“下载文件”即可下载新的表格文件,你可以选择将其导出为 PDF 或 Word 格式。
随着数据的爆炸性增长和技术的进步,数据分析师、数据科学家和业务分析师等角色变得越来越重要。对于数据分析来说,数据采集、数据清洗、数据可视化是基础工作,必须足够熟悉才能让AI更好地为自己服务。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12