
CDA持证人简介:
万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。
学习入口:https://edu.cda.cn/goods/show/3878?targetId=6829&preview=0
设想你是连锁零售电商的运营负责人,面临季度备货难题:各门店、多品牌,如何确定合理的备货量以避免库存积压或订单流失?答案在于数据驱动。我们将通过分析历史销售数据,为备货决策提供支持。这需借助BI(商业智能)系统,它能将数据转化为洞察,辅助决策。
需求梳理可采用5W2H模型:
看,这么一梳理,是不是清晰多了?可视化看板搭建整个过程主要分为三步:
我们将通过一个电商备货案例,阐释如何从零开始搭建BI看板,化解数据繁杂带来的困惑,提升数据洞察力。
高质量、结构清晰的数据是BI的基石。
电商案例中常用星型模型,包含一个事实表,包括销售明细事实表order_main,记录销售日期、门店、品类、品牌、销售额、毛利等;多个维度表如“门店维度表dim_store”、“品类维度表dim_category”、“品牌维度表dim_brand”。这些表通过键值关联。
推荐免费在线工具SQLPub,它免安装,支持SQL练习(DML, DQL, DCL),并可部署BI,适合学习和实践数据仓库搭建。可用其创建维度表、事实表并导入数据。
数据仓库绪后,需搭建BI系统。
选择需结合需求、预算、团队技能等。FineBI个人版免费,易于上手。
主流BI软件多支持一键式安装
启动服务(如安装目录/opt/FineBI/bin下使用nohup ./finebi &)。
浏览器访问 http://服务器IP:端口号/webroot/decision 进入系统。
在FineBI中配置数据连接,连接到先前搭建的数据仓库(如MySQL)。
这是数据分析成果的最终呈现。
选择合适的图表:
电商备货案例中,可能用到柱形图(对比销量)、折线图(分析趋势)、饼图(品类占比)等。
数据可视化是对数据分析业务人员的基本技能要求,也是CDA数据分析师一级的重要考点,如果想提升自己数据可视化的能力,可以在CDA认证小程序找到相关模拟题进行练习。
好的BI看板能讲述数据故事。在FineBI等工具中,可通过拖拽字段与图表组件绑定,快速生成图表,并设置筛选器、钻取、联动等交互功能。
电商备货看板可包含:
这些图表帮助运营负责人掌握销售状况,为备货计划提供数据支持。
搭建BI系统和看板的益处显著:
本文梳理了从业务需求到数据建仓、系统部署及看板搭建的全过程。这仅为入门引导,数据分析领域广阔,BI技术应用广泛。
推荐资源:
数据分析需持续学习、实践与思考。如果大家想查看万老师完整版分享视频,可以微信扫码免费学习。
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》,预测了未来五年内增长最快的十大岗位,其中就包括了数据分析师和科学家、数字化转型人员。
学习入口:https://edu.cda.cn/goods/show/3878?targetId=6829&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18