京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
我之前在字节的时候,负责一个在线知识服务平台的数据运营,内容方向偏职场提升类。业务侧跟说:“我们内容都做得不错,更新也很稳定,用户就是不留下来。打开数据库,日活还行、注册增长也不错,但续费率低得发指。

大家把锅甩给“内容吸引力”,但事实上,大家都知道,要是光靠内容驱动增长,那这行业也太公平了。于是我决定不再用模糊印象判断,拉通一次完整的生命周期分析,看看到底问题卡在哪一段。
你可以把用户生命周期模型,想象成用户在你产品里的“人生轨迹图”。
它的核心就是一句话:
每个用户,不管从哪里来,最终都会走向两种结果:留下 or 离开。我们要做的是尽早识别他们在哪条路上,做出该做的动作。生命周期模型,正是用来把这段“关系旅程”切片分析的工具。用户生命周期模型的基础版本,一般包含这5个阶段:

用户生命周期等业务数据分析的方法是CDA数据分析一级的重要考点。
答案是:行为 + 时间 两个维度共同判断。
比如:
生命周期模型不是为了分组好看,而是为了及时干预——在用户“还在观望”时就伸出手,而不是他们彻底走远后才追问原因。

我们这次的实际拆法如下:

生命周期阶段实战改造详解
问题场景:
注册完成后的用户,大多数在首页浏览几秒后直接退出,首课完成率仅 26%。
用户行为分析:

解决方案:

结果:
新用户激活的时间段也不仅限于用户注册的第一天,而是延续到首周、首月,甚至更长的时间段。比如,Instagram的新用户激活体系是一个60天的流程。激活团队负责在用户开始使用产品的60天之内,帮助用户发现产品的价值,形成使用的习惯。

教育产品常遇到的场景:
用户完成第一节课后,多数没做进一步互动,之后也没回来。
用户行为分析:
解决方案:
结果:
问题场景:
不少用户使用频率从每周4次掉到每周1次,甚至不再打开App。之前试过发优惠券唤醒,效果极差。

用户行为分析:
解决方案:
结果:
它帮你看清这三件事:

生命周期模型不是万能钥匙,但它是最早能预警问题的“雷达”。你不需要等到流失率爆了、续费崩了,才临时抱佛脚。
一个搭得好的生命周期体系,能提前1-2周告诉你:用户在冷了。
真正的高手不是亡羊补牢,而是察觉到“羊有点要跑”的时候就开始补栅栏。
真正的“活跃用户”不是打开几次App的人,而是留下可预测行为轨迹的用户。不要再看日活,不要再盯点击量,去看行为链是否完整。
一个收藏→续播→加入计划的动作链,比刷5次推荐页更值钱。
用户不说话,但行为会说话。你得听得懂它在告诉你什么
用户生命周期模型的终极意义不是分层,而是让“每一类用户都被认真对待过”。新用户不是用完优惠券就放养;衰退用户不是等他流失了才后悔;低质量活跃用户不是“看起来还在”就不用管;每一层用户都值得你做点什么。
我们不是做模型的工程师,而是用户关系的维护者。生命周期模型只是你手里的工具,真正重要的是:你有没有在用户最需要你的那个时刻,做对了一件事。
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23