京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
我之前在字节的时候,负责一个在线知识服务平台的数据运营,内容方向偏职场提升类。业务侧跟说:“我们内容都做得不错,更新也很稳定,用户就是不留下来。打开数据库,日活还行、注册增长也不错,但续费率低得发指。

大家把锅甩给“内容吸引力”,但事实上,大家都知道,要是光靠内容驱动增长,那这行业也太公平了。于是我决定不再用模糊印象判断,拉通一次完整的生命周期分析,看看到底问题卡在哪一段。
你可以把用户生命周期模型,想象成用户在你产品里的“人生轨迹图”。
它的核心就是一句话:
每个用户,不管从哪里来,最终都会走向两种结果:留下 or 离开。我们要做的是尽早识别他们在哪条路上,做出该做的动作。生命周期模型,正是用来把这段“关系旅程”切片分析的工具。用户生命周期模型的基础版本,一般包含这5个阶段:

用户生命周期等业务数据分析的方法是CDA数据分析一级的重要考点。
答案是:行为 + 时间 两个维度共同判断。
比如:
生命周期模型不是为了分组好看,而是为了及时干预——在用户“还在观望”时就伸出手,而不是他们彻底走远后才追问原因。

我们这次的实际拆法如下:

生命周期阶段实战改造详解
问题场景:
注册完成后的用户,大多数在首页浏览几秒后直接退出,首课完成率仅 26%。
用户行为分析:

解决方案:

结果:
新用户激活的时间段也不仅限于用户注册的第一天,而是延续到首周、首月,甚至更长的时间段。比如,Instagram的新用户激活体系是一个60天的流程。激活团队负责在用户开始使用产品的60天之内,帮助用户发现产品的价值,形成使用的习惯。

教育产品常遇到的场景:
用户完成第一节课后,多数没做进一步互动,之后也没回来。
用户行为分析:
解决方案:
结果:
问题场景:
不少用户使用频率从每周4次掉到每周1次,甚至不再打开App。之前试过发优惠券唤醒,效果极差。

用户行为分析:
解决方案:
结果:
它帮你看清这三件事:

生命周期模型不是万能钥匙,但它是最早能预警问题的“雷达”。你不需要等到流失率爆了、续费崩了,才临时抱佛脚。
一个搭得好的生命周期体系,能提前1-2周告诉你:用户在冷了。
真正的高手不是亡羊补牢,而是察觉到“羊有点要跑”的时候就开始补栅栏。
真正的“活跃用户”不是打开几次App的人,而是留下可预测行为轨迹的用户。不要再看日活,不要再盯点击量,去看行为链是否完整。
一个收藏→续播→加入计划的动作链,比刷5次推荐页更值钱。
用户不说话,但行为会说话。你得听得懂它在告诉你什么
用户生命周期模型的终极意义不是分层,而是让“每一类用户都被认真对待过”。新用户不是用完优惠券就放养;衰退用户不是等他流失了才后悔;低质量活跃用户不是“看起来还在”就不用管;每一层用户都值得你做点什么。
我们不是做模型的工程师,而是用户关系的维护者。生命周期模型只是你手里的工具,真正重要的是:你有没有在用户最需要你的那个时刻,做对了一件事。
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11