
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
我之前在字节的时候,负责一个在线知识服务平台的数据运营,内容方向偏职场提升类。业务侧跟说:“我们内容都做得不错,更新也很稳定,用户就是不留下来。打开数据库,日活还行、注册增长也不错,但续费率低得发指。
大家把锅甩给“内容吸引力”,但事实上,大家都知道,要是光靠内容驱动增长,那这行业也太公平了。于是我决定不再用模糊印象判断,拉通一次完整的生命周期分析,看看到底问题卡在哪一段。
你可以把用户生命周期模型,想象成用户在你产品里的“人生轨迹图”。
它的核心就是一句话:
每个用户,不管从哪里来,最终都会走向两种结果:留下 or 离开。我们要做的是尽早识别他们在哪条路上,做出该做的动作。生命周期模型,正是用来把这段“关系旅程”切片分析的工具。用户生命周期模型的基础版本,一般包含这5个阶段:
用户生命周期等业务数据分析的方法是CDA数据分析一级的重要考点。
答案是:行为 + 时间 两个维度共同判断。
比如:
生命周期模型不是为了分组好看,而是为了及时干预——在用户“还在观望”时就伸出手,而不是他们彻底走远后才追问原因。
我们这次的实际拆法如下:
生命周期阶段实战改造详解
问题场景:
注册完成后的用户,大多数在首页浏览几秒后直接退出,首课完成率仅 26%。
用户行为分析:
解决方案:
结果:
新用户激活的时间段也不仅限于用户注册的第一天,而是延续到首周、首月,甚至更长的时间段。比如,Instagram的新用户激活体系是一个60天的流程。激活团队负责在用户开始使用产品的60天之内,帮助用户发现产品的价值,形成使用的习惯。
教育产品常遇到的场景:
用户完成第一节课后,多数没做进一步互动,之后也没回来。
用户行为分析:
解决方案:
结果:
问题场景:
不少用户使用频率从每周4次掉到每周1次,甚至不再打开App。之前试过发优惠券唤醒,效果极差。
用户行为分析:
解决方案:
结果:
它帮你看清这三件事:
生命周期模型不是万能钥匙,但它是最早能预警问题的“雷达”。你不需要等到流失率爆了、续费崩了,才临时抱佛脚。
一个搭得好的生命周期体系,能提前1-2周告诉你:用户在冷了。
真正的高手不是亡羊补牢,而是察觉到“羊有点要跑”的时候就开始补栅栏。
真正的“活跃用户”不是打开几次App的人,而是留下可预测行为轨迹的用户。不要再看日活,不要再盯点击量,去看行为链是否完整。
一个收藏→续播→加入计划的动作链,比刷5次推荐页更值钱。
用户不说话,但行为会说话。你得听得懂它在告诉你什么
用户生命周期模型的终极意义不是分层,而是让“每一类用户都被认真对待过”。新用户不是用完优惠券就放养;衰退用户不是等他流失了才后悔;低质量活跃用户不是“看起来还在”就不用管;每一层用户都值得你做点什么。
我们不是做模型的工程师,而是用户关系的维护者。生命周期模型只是你手里的工具,真正重要的是:你有没有在用户最需要你的那个时刻,做对了一件事。
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
https://edu.cda.cn/goods/show/3845?targetId=6754&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11