京公网安备 11010802034615号
经营许可证编号:京B2-20210330
编辑:LRST
【新智元导读】中科院自动化所提出BridgeVLA模型,通过将3D输入投影为2D图像并利用2D热图进行动作预测,实现了高效且泛化的3D机器人操作学习。实验表明,BridgeVLA在仿真和真实场景中均展现出卓越的性能和数据效率,仅需3条轨迹即可在基础任务中达到96.8%的成功率。
近年来,视觉-语言-动作(VLA)模型在机器人操作任务中大放异彩,成为推动通用机器人操作的重要引擎。
但现有的VLA模型,大多只以2D信息作为输入,且需要大量的机器人数据进行微调;
反观以PerAct,RVT-2为代表的3D操作策略,通常仅需要10条轨迹就能够取得不错的效果,因此,一个很自然的想法是,是否能将现有的2D VLA升级为3D VLA,使其同时兼具2D VLA的效果以及3D操作策略的效率?
中科院自动化所的研究人员提出的BridgeVLA给出了肯定的回答!

论文链接: https://www.arxiv.org/abs/2506.07961
项目主页: https://bridgevla.github.io/home_page.html
实验表明,BridgeVLA仅需采集3条轨迹就能在基础设置中实现96.8%的任务成功率。
在多种泛化性设置中,比如未见过的干扰物、高度、光照、物体种类以及未见过的物体技能组合等,BridgeVLA展现出碾压式的性能,相较于基线模型取得了32%的性能提升。
在仿真中,BridgeVLA屠榜了主流3D机器人操作基准,在RLBench、COLOSSEUM、GemBench等三个仿真基准中均取得了最先进的性能。

图1. BridgeVLA统一输入与输出的方案,兼顾泛化性与高效性
近来,OpenVLA、pi0等2D VLA架构在机器人领域取得了广泛关注,它们借助预训练多模态大模型强大的表征能力,将自然语言指令、图像观测与动作预测串联在一起,展现出很强的泛化能力。
然而,这类型2D VLA所带来的代价同样很大:为了让模型真正学会每个任务,往往需要上百条专家演示。这其中的数据收集、清洗与标注需要高昂的人力成本,很难在更大规模的工业场景下落地。
与此同时,研究者们发现,如果直接在3D空间中学习动作策略,凭借3D输入蕴含的显式空间结构信息,模型只需极少的轨迹就能掌握操作技能,具有很高的数据效率。
因此,理论上来讲,将3D信息和VLA相结合是有可能构造出一个高性能且高效率的3D VLA模型的。然而,当前已有的3D VLA模型却并未实现上述期待。
BridgeVLA的研究团队发现,这背后有两个方面的原因:
1)这些方案输出形式割裂。大多数3D VLA方法把动作输出建模为 token 序列,这样的做法割裂了动作输出与观测输入之间的空间对应关系,难以充分利用三维几何信息。
2)这些方案的输入和预训练多模态大模型的输入分布不匹配。预训练VLM是以2D 图像作为输入的,而这与微调阶段的3D 输入分布差异巨大,导致直接迁移效果不佳。
基于这些观察,BridgeVLA的研究团队提出:如果将3D输入与动作输出都统一到2D空间,同时将预训练阶段的输入和输出也统一到2D空间的话,将可以同时继承2D VLA的泛化能力与3D操作策略的数据效率。

图2. BridgeVLA 2D热度图预训练与3D动作微调结构图
BridgeVLA的训练流程主要分为两个阶段:首先是2D 热度图预训练,然后是3D动作微调。预训练阶段主要用于提升模型的空间感知能力,使其具备从图像和语言描述中精准定位目标区域的能力;而微调阶段则通过三视角图像进行动作预测,完成具体的 3D 操作策略学习。
传统的预训练多模态大模型在预训练阶段主要通过预测token 序列来完成分类或生成任务,而这样的token序列并不具备任何的空间结构。
为了使模型具备空间定位能力,BridgeVLA 设计了一种热度图预训练方式,训练模型根据文本指令预测关于目标对象位置的概率热度图,并使用了 RoboPoint 中的目标检测数据集进行预训练。
在模型结构上,BridgeVLA使用了由SigLIP视觉编码器和Gemma Transformer构成的PaliGemma作为VLM主干。
预训练时,模型的输入为图像与其对应的文本描述(如图中红色的杯子在哪),然后通过PaliGemma提取特征,最后使用一个可学习的上采样模块生成与原图同分辨率的热度图。
整个过程采用交叉熵损失进行监督训练。这种预训练策略使VLM获得了空间感知能力,能够根据语言描述在图像中精准定位目标区域,为后续下游3D操作策略学习提供帮助。
在微调阶段,模型的目标是根据3D点云和语言指令输出合理的机器人动作。
具体来说,BridgeVLA首先从顶部、正面和右侧三个方向将点云渲染为三幅2D图像,并将其作为输入送入经过重新预训练的 VLM 主干网络。模型随后会为每个视角生成一张2D 热度图。
为了保持微调与预训练的一致性,VLM 的输入中不包含机器人状态或其他非视觉信息,从而避免输入分布偏移。通过结合深度图和相机参数,三个热度图可以被反投影,从而得到末端执行器的位置估计。
末端执行器的旋转姿态和夹爪开闭状态则通过额外引入的MLP进行预测。
BridgeVLA在多个主流3D操作榜单上都取得了最先进的性能。在RLBench中成功率达88.2%,相较于基准模型提升了6.8%
而在环境出现颜色、材质、物体大小等12种干扰的COLOSSEUM环境中相较于之前SoTA方法提升了7.3%,在同样极具挑战的GemBench环境中,即使面对全新位置、全新物体的考验,BridgeVLA也取得了最佳的50%的成功率。
这些实验都证明了BridgeVLA具备很强的泛化能力,充分利用了预训练多模态模型中蕴含的丰富视觉与语言先验知识。

图3. BridgeVLA 在RLBench上的实验结果

图4. BridgeVLA 在COLOSSEUM上的实验结果

图5. BridgeVLA 在GemBench上的实验结果
BridgeVLA同时在真机实验中进行了大规模实验,BridgeVLA可以很好的克服干扰物、不同高度、不同光照条件、不同背景的影响,同时也具有一定的组合泛化能力、和全新物体的泛化能力,这都得益于预训练骨干网络中蕴含的先验特征。
同时BridgeVLA也证明了其极高的数据效率,仅仅使用3条轨迹就可以达到96.8%的基础任务成功率,几乎与使用10条轨迹训练的版本持平,结果表明BridgeVLA不仅泛化能力强,而且对数据要求极低,非常适合在真实机器人系统中部署与扩展。

图6. BridgeVLA 在真机实验上的实验结果
BridgeVLA通过统一预训练的输入输出到二维图像空间,建立起了一个高性能且高数据效率的3D VLA新范式。
可以预见,未来将有更多类似的探索推动 VLA 模型持续演进,迈向新的高度。
参考资料:
https://bridgevla.github.io
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13