京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从业者提升专业能力与职场竞争力的重要途径。其中,CDA LEVEL II 考试聚焦于中高级数据分析师所需的核心技能,Python 作为主流数据分析工具,在考试中占据关键地位。深入剖析考试题型,能清晰洞察 Python 在数据分析全流程中的运用要点,为备考者提供精准的学习方向。
数据清洗是数据分析的基石,CDA LEVEL II 考试常通过实际案例考查考生运用 Python 处理各类数据问题的能力。例如,给出包含缺失值、异常值、重复值以及格式错误的数据表,要求考生运用 Pandas 库进行清洗。
面对缺失值,考生需熟练使用isnull()函数定位缺失位置,再依据数据特性与业务场景,选择fillna()方法以均值、中位数或特定值填补,或者使用dropna()函数删除缺失严重的行或列。如处理一份销售数据,若 “销售额” 列存在少量缺失值,可采用该列均值填补:
import pandas as pd
data = pd.read_csv('sales_data.csv')
mean_sales = data['销售额'].mean()
data['销售额'] = data['销售额'].fillna(mean_sales)
对于异常值,常借助箱线图(boxplot()函数)或 Z - score 方法识别。使用箱线图可直观展示数据分布,快速发现离群点。假设要检测 “产品销量” 列的异常值:
import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(data['产品销量'])
plt.show()
发现异常值后,可依据业务逻辑决定剔除或修正。而处理重复值时,duplicated()函数用于检测重复行,drop_duplicates()函数实现去重操作,确保数据的唯一性。
考试中数据分析类题型旨在评估考生运用 Python 进行数据探索、统计分析与建模的能力。常见题型包括计算数据的统计量、分析变量间的相关性以及构建简单预测模型。
利用 Pandas 的describe()函数能快速生成数据的基本统计量,如均值、标准差、最值等,帮助理解数据的整体特征。分析变量相关性时,corr()函数可计算相关系数,结合热力图(Seaborn 库的heatmap()函数)可视化展示,清晰呈现变量间的关联程度。以分析电商用户购买行为数据为例,探究 “购买频率” 与 “客单价” 的相关性:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.read_csv('ecommerce_user_data.csv')
correlation = data[['购买频率', '客单价']].corr()
sns.heatmap(correlation, annot=True, cmap='coolwarm')
plt.title('Correlation between Purchase Frequency and Average Order Value')
plt.show()
在预测建模方面,Scikit - learn 库是核心工具。例如,基于历史销售数据构建线性回归模型预测未来销售额,需先对数据进行预处理,划分训练集与测试集,再选择合适模型进行训练与评估:
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 假设data为包含特征与目标变量的数据集
X = data.drop('销售额', axis=1)
y = data['销售额']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
良好的数据可视化能将复杂数据转化为直观易懂的图表,助力决策。CDA LEVEL II 考试要求考生运用 Matplotlib、Seaborn 等库绘制各类图表,清晰传达数据信息。
如绘制柱状图对比不同产品的销量,可使用 Matplotlib 的bar()函数:
import matplotlib.pyplot as plt
import pandas as pd
data = pd.read_csv('product_sales.csv')
products = data['产品名称']
sales = data['销量']
plt.bar(products, sales)
plt.xlabel('Product Name')
plt.ylabel('Sales Volume')
plt.title('Product Sales Comparison')
plt.xticks(rotation=45)
plt.show()
Seaborn 库则更擅长绘制统计图表,如用regplot()函数绘制散点图并添加回归拟合线,分析两个变量的关系,在分析用户年龄与消费金额关系时十分实用:
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('user_consumption.csv')
sns.regplot(x='年龄', y='消费金额', data=data)
plt.title('Relationship between Age and Consumption Amount')
plt.show()
此外,对于时间序列数据,常使用折线图展示趋势变化,通过设置合适的时间索引,利用 Matplotlib 或 Seaborn 轻松实现。
综合案例分析是 CDA LEVEL II 考试的难点与重点,要求考生综合运用 Python 的各项技能,从数据获取、清洗、分析到可视化,完整解决实际业务问题。
例如,给定一个电商平台的多源数据集,包括用户信息、订单数据、商品详情等,要求分析用户购买行为,提出营销策略建议。考生需先运用 Pandas 读取并合并不同数据源的数据,进行数据清洗,去除噪声与无效数据。接着,通过数据分析挖掘用户特征,如购买频次分布、热门商品品类等。再运用数据可视化将分析结果以清晰图表呈现,如用户购买频次直方图、商品品类销售占比饼图等。最后,基于分析结果提出针对性营销策略,如针对高频购买用户推出会员专属优惠,优化热门商品的推荐算法等。
通过对 CDA LEVEL II 考试中各类涉及 Python 数据分析题型的剖析可知,扎实掌握 Python 相关库的使用,深入理解数据分析的原理与业务逻辑,是应对考试、提升数据分析能力的关键。无论是备考 CDA 认证,还是投身实际数据科学工作,不断练习与实践这些技能,都将为在数据驱动的时代取得成功奠定坚实基础。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09