京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从业者提升专业能力与职场竞争力的重要途径。其中,CDA LEVEL II 考试聚焦于中高级数据分析师所需的核心技能,Python 作为主流数据分析工具,在考试中占据关键地位。深入剖析考试题型,能清晰洞察 Python 在数据分析全流程中的运用要点,为备考者提供精准的学习方向。
数据清洗是数据分析的基石,CDA LEVEL II 考试常通过实际案例考查考生运用 Python 处理各类数据问题的能力。例如,给出包含缺失值、异常值、重复值以及格式错误的数据表,要求考生运用 Pandas 库进行清洗。
面对缺失值,考生需熟练使用isnull()函数定位缺失位置,再依据数据特性与业务场景,选择fillna()方法以均值、中位数或特定值填补,或者使用dropna()函数删除缺失严重的行或列。如处理一份销售数据,若 “销售额” 列存在少量缺失值,可采用该列均值填补:
import pandas as pd
data = pd.read_csv('sales_data.csv')
mean_sales = data['销售额'].mean()
data['销售额'] = data['销售额'].fillna(mean_sales)
对于异常值,常借助箱线图(boxplot()函数)或 Z - score 方法识别。使用箱线图可直观展示数据分布,快速发现离群点。假设要检测 “产品销量” 列的异常值:
import seaborn as sns
import matplotlib.pyplot as plt
sns.boxplot(data['产品销量'])
plt.show()
发现异常值后,可依据业务逻辑决定剔除或修正。而处理重复值时,duplicated()函数用于检测重复行,drop_duplicates()函数实现去重操作,确保数据的唯一性。
考试中数据分析类题型旨在评估考生运用 Python 进行数据探索、统计分析与建模的能力。常见题型包括计算数据的统计量、分析变量间的相关性以及构建简单预测模型。
利用 Pandas 的describe()函数能快速生成数据的基本统计量,如均值、标准差、最值等,帮助理解数据的整体特征。分析变量相关性时,corr()函数可计算相关系数,结合热力图(Seaborn 库的heatmap()函数)可视化展示,清晰呈现变量间的关联程度。以分析电商用户购买行为数据为例,探究 “购买频率” 与 “客单价” 的相关性:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.read_csv('ecommerce_user_data.csv')
correlation = data[['购买频率', '客单价']].corr()
sns.heatmap(correlation, annot=True, cmap='coolwarm')
plt.title('Correlation between Purchase Frequency and Average Order Value')
plt.show()
在预测建模方面,Scikit - learn 库是核心工具。例如,基于历史销售数据构建线性回归模型预测未来销售额,需先对数据进行预处理,划分训练集与测试集,再选择合适模型进行训练与评估:
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 假设data为包含特征与目标变量的数据集
X = data.drop('销售额', axis=1)
y = data['销售额']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
良好的数据可视化能将复杂数据转化为直观易懂的图表,助力决策。CDA LEVEL II 考试要求考生运用 Matplotlib、Seaborn 等库绘制各类图表,清晰传达数据信息。
如绘制柱状图对比不同产品的销量,可使用 Matplotlib 的bar()函数:
import matplotlib.pyplot as plt
import pandas as pd
data = pd.read_csv('product_sales.csv')
products = data['产品名称']
sales = data['销量']
plt.bar(products, sales)
plt.xlabel('Product Name')
plt.ylabel('Sales Volume')
plt.title('Product Sales Comparison')
plt.xticks(rotation=45)
plt.show()
Seaborn 库则更擅长绘制统计图表,如用regplot()函数绘制散点图并添加回归拟合线,分析两个变量的关系,在分析用户年龄与消费金额关系时十分实用:
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('user_consumption.csv')
sns.regplot(x='年龄', y='消费金额', data=data)
plt.title('Relationship between Age and Consumption Amount')
plt.show()
此外,对于时间序列数据,常使用折线图展示趋势变化,通过设置合适的时间索引,利用 Matplotlib 或 Seaborn 轻松实现。
综合案例分析是 CDA LEVEL II 考试的难点与重点,要求考生综合运用 Python 的各项技能,从数据获取、清洗、分析到可视化,完整解决实际业务问题。
例如,给定一个电商平台的多源数据集,包括用户信息、订单数据、商品详情等,要求分析用户购买行为,提出营销策略建议。考生需先运用 Pandas 读取并合并不同数据源的数据,进行数据清洗,去除噪声与无效数据。接着,通过数据分析挖掘用户特征,如购买频次分布、热门商品品类等。再运用数据可视化将分析结果以清晰图表呈现,如用户购买频次直方图、商品品类销售占比饼图等。最后,基于分析结果提出针对性营销策略,如针对高频购买用户推出会员专属优惠,优化热门商品的推荐算法等。
通过对 CDA LEVEL II 考试中各类涉及 Python 数据分析题型的剖析可知,扎实掌握 Python 相关库的使用,深入理解数据分析的原理与业务逻辑,是应对考试、提升数据分析能力的关键。无论是备考 CDA 认证,还是投身实际数据科学工作,不断练习与实践这些技能,都将为在数据驱动的时代取得成功奠定坚实基础。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26