
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师
今天我将为大家带来一个关于用户私域用户质量数据分析的案例分享,主要围绕三部分来进行阐述。
学习入口:https://edu.cda.cn/goods/show/3853?targetId=6765&preview=0
我们以一家专注于私域运营的企业为案例,这家企业的运营模式主要通过社群拉新实现用户增长,主要采用线上拉新的模式获取用户。
线上拉新模式主要是由商务拓展(BD)团队寻找商家合作,由商家邀请用户加入社群。
之后,企业还推出了一种地推拉新模式,即线下拉新。线下拉新由地推人员邀请用户进群,用户进群后同样可以领取优惠券并下单。
因此,需要对线上拉新和线下拉新两种模式下的用户各项指标进行对比分析,以评估其交易转化情况。
我们先来分析下关注用户的物理特征,包括末次访问城市、90天内下单情况以及末单物理城市等。
本次线下拉新试点选择在长沙进行。数据显示,末次访问城市中,仅有70%的用户位于长沙,其余30%的用户来自其他城市。
在90天内有下单行为的用户占比65%,还有35%的用户没有下单行为。
从城市来看,62%的订单收货地址在长沙,3%的订单收货地址来自其他城市。
我们从三个交易指标进行分析:90天内人均交易频次、客单价和平台补贴率。
从数据可以看出,活跃用户的交易频次更高,而线下新客和线上新客的交易频次相对较低。
综合来看,与长沙社群活跃用户以及整体新客交易数据对比,本次线下拉新成功的用户具有以下特征:交易频次更低、实付客单更高、平台补贴率更低。
对比线下进群(地推模式)和线上拉新(全国范围的线上模式)这两种模式下的用户数、纯新用户占比、退群情况、领券和核销情况。
用户数:
纯新用户占比:
退群情况:
领券和核销情况:
综合来看,与线上进群用户对比,线下进群用户具有以下特征:
通过以上分析,我们可以看到,线下拉新模式虽然在用户数和退群率上表现较好,但在领券率和核销订单量上表现较差。
同期群分析是一种量化行为指标的方法,通过分析不同群体在特定时间段内的行为变化,来衡量指定对象组的持续性行为差异。
在社群运营中,活跃率是一个极为重要的指标,而同期群分析能够帮助我们深入了解用户在社群中的每日活跃情况。
地推模式下的用户质量并未达到预期,其退群率、领券率和核销率等关键指标均低于线上拉新模式。
具体来看:
这表明,尽管地推模式在用户数量上可能有优势,但从用户活跃度和转化效率来看,线上拉新模式的用户质量更高。
同期群分析通过量化行为指标,分析不同群体在特定时间段内的行为变化,帮助我们衡量用户在社群中的活跃情况。
通过同期群分析,我们发现:
这进一步证实了线上拉新模式在用户活跃度方面的优势。
给大家介绍3种非常实用的数据分析模型:
帕累托分析模型基于帕累托原则(80/20法则),通过识别和聚焦于最重要的20%因素来优化资源和提升效率。
举个例子,假设我们是一家电子商务公司,想要分析造成订单延迟的原因,并使用帕累托分析模型确定最主要的问题因素。
根据帕累托图,我们发现物流问题和系统故障占据了主要的比例,合计占据了约80%的订单延迟原因。因此,我们可以将重点放在解决这两个问题上,以最大程度地缩短订单的延迟时间。
在使用帕累托分析模型时,需要注意以下几点:
波士顿矩阵模型是一种经典的产品组合分析工具,用于评估企业产品组合中各个产品的市场增长率和市场份额。
举个例子,假设我们是一家消费电子公司,拥有多款产品,现在我们来模拟数据并应用波士顿矩阵模型进行分析。
通过这张图,我们可以将各产品定位到波士顿矩阵的不同象限中。
比如:产品A定位为明星产品,产品B为问题产品, 产品C为现金牛,产品D为瘦狗产品。根据不同定位,我们可以制定相应的战略,比如加大对产品B的市场投入以提升其市场份额,优化产品C的成本结构以提高利润率等。
数据分析模型和方法有很多,在工作中可以根据实际需要灵活选择。
漏斗模型是用户行为分析中最重要的模型之一,用于跟踪用户在完成特定目标过程中的流失情况。
其核心步骤包括:
学习入口:https://edu.cda.cn/goods/show/3853?targetId=6765&preview=0
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25