京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习入门报告之 解决问题一般工作流程
对于给定的数据集和问题,用机器学习的方法解决问题的工作一般分为4个步骤:
一. 数据预处理
首先,必须确保数据的格式符合要求。使用标准数据格式可以融合算法和数据源,方便匹配操作。此外还需要为机器学习算法准备特定的数据格式。
然后,直接得到的数据集很少可以直接使用,可能有以下原因:
1. 样本某些属性缺失
2. 某些样本未标记
3. 样本属性过多
4. 没有分出训练集和测试集
5. 不同类别训练样例比例相差太大
对于1,2这样的情况,在该类样本数较少的情况下一般通过删除该类无效样本来清洗数据。
对于3
·过多的特征可能误导学习器
·数据的可视化要求维度不高于3
·维度越少训练越快,可尝试的东西越多,能得到更好地效果
·数据的维度可能虚高。
特征选择法:
所谓特征选择,就是选择样本中有用、跟问题相关的特征。事实上并不一定样本的所有属性对具体问题都是有用的,通过一定的方法选择合适的特征可以保证模型更优。常用的方法大致分三类:过滤式、包裹式和嵌入式。
特征抽取法:
特征抽取试图将原始特征空间转换成一个低维特征空间而不丢失主要信息。无法使用选择方法来删除特征,而特征又太多的时候,这种方法很有效。我们可以通过主成分分析PCA和线性判别式分析和多维标度法来验证。
对于4,为了方便训练和验证模型好坏,数据集一般会以9:1或者其他合适比例(比例选择主要基于实际问题)分为测试集和验证集。如果给定的数据集只是已经标记好的样本,那么划分时必须保证数据集和测试集的分布大致均匀。
对于5,即类别不均衡问题,处理的一个基本策略是—再缩放。
二. 选定算法
一种方式是根据有没有标记样本考虑。
如果是有标记样本,可以考虑有监督学习,反之则是无监督学习。
无监督学习方法主要是聚类。随机选定几个样本,通过一定的算法不停迭代直至收敛或者达到停止条件,然后便将所有样本分成了几类。
对有监督学习而言,根据最终所需要的输出结果
如果是分类问题,可以参考的模型有线性回归及其非线性扩展、决策树、神经网络、支持向量机SVM、规则学习等
如果是回归问题,可以认为是分类的连续形式,方法便是以上模型的变种或扩展
如果涉及到概率,可以参考的有神经网络、贝叶斯、最大似然、EM、概率图、隐马尔科夫模型、强化学习等
三. 训练算法
将格式化数据输入到算法,从中抽取知识或信息。这里的得到的知识需要存储为计算机可以处理的格式,方便后续使用。
四. 性能评估和优化
如果要评估训练集和测试集的划分效果,常用的有留出法、交叉验证法、自助法、模型调参等
如果模型计算时间太长,可以考虑剪枝
如果是过拟合,则可通过引入正则化项来抑制(补偿原理)
如果单个模型效果不佳,可以集成多个学习器通过一定策略结合,取长补短(集成学习)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15