想和数据挖掘沾点边,所以最近在复习一些算法,因为又学了点R,深感这是个统计分析挖掘的利器,所以想用R实现一些挖掘算法。
朴素贝叶斯法大概是最简单的一种挖掘算法了,《统计学习方法》在第四章做了很详细的叙述,无非是对于输入特征x,利用通过学习得到的模型计算后验概率分布,将后验概率最大的分类作为输出。
根据贝叶斯定理,后验概率P(Y=cx | X=x) = 条件概率P(X=x | Y=cx) * 先验概率P(Y = ck) / P(X=x),取P(X=x | Y=cx) * P(Y = ck)最大的分类作为输出。
下面是一个小数据集下使用R进行朴素贝叶斯分类的例子,代码如下:
#构造训练集
data <- matrix(c("sunny","hot","high","weak","no",
"sunny","hot","high","strong","no",
"overcast","hot","high","weak","yes",
"rain","mild","high","weak","yes",
"rain","cool","normal","weak","yes",
"rain","cool","normal","strong","no",
"overcast","cool","normal","strong","yes",
"sunny","mild","high","weak","no",
"sunny","cool","normal","weak","yes",
"rain","mild","normal","weak","yes",
"sunny","mild","normal","strong","yes",
"overcast","mild","high","strong","yes",
"overcast","hot","normal","weak","yes",
"rain","mild","high","strong","no"), byrow = TRUE,
dimnames = list(day = c(),
condition = c("outlook","temperature",
"humidity","wind","playtennis")), nrow=14, ncol=5);
#计算先验概率
prior.yes = sum(data[,5] == "yes") / length(data[,5]);
prior.no = sum(data[,5] == "no") / length(data[,5]);
#模型
naive.bayes.prediction <- function(condition.vec) {
# Calculate unnormlized posterior probability for playtennis = yes.
playtennis.yes <-
sum((data[,1] == condition.vec[1]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(outlook = f_1 | playtennis = yes)
sum((data[,2] == condition.vec[2]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(temperature = f_2 | playtennis = yes)
sum((data[,3] == condition.vec[3]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(humidity = f_3 | playtennis = yes)
sum((data[,4] == condition.vec[4]) & (data[,5] == "yes")) / sum(data[,5] == "yes") * # P(wind = f_4 | playtennis = yes)
prior.yes; # P(playtennis = yes)
# Calculate unnormlized posterior probability for playtennis = no.
playtennis.no <-
sum((data[,1] == condition.vec[1]) & (data[,5] == "no")) / sum(data[,5] == "no") * # P(outlook = f_1 | playtennis = no)
sum((data[,2] == condition.vec[2]) & (data[,5] == "no")) / sum(data[,5] == "no") * # P(temperature = f_2 | playtennis = no)
sum((data[,3] == condition.vec[3]) & (data[,5] == "no")) / sum(data[,5] == "no") * # P(humidity = f_3 | playtennis = no)
sum((data[,4] == condition.vec[4]) & (data[,5] == "no")) / sum(data[,5] == "no") * # P(wind = f_4 | playtennis = no)
prior.no; # P(playtennis = no)
return(list(post.pr.yes = playtennis.yes,
post.pr.no = playtennis.no,
prediction = ifelse(playtennis.yes >= playtennis.no, "yes", "no")));
}
#预测
naive.bayes.prediction(c("rain", "hot", "high", "strong"));
naive.bayes.prediction(c("sunny", "mild", "normal", "weak"));
naive.bayes.prediction(c("overcast", "mild", "normal", "weak"));
最后一个分类预测结果如下:
$post.pr.yes
[1] 0.05643739
$post.pr.no
[1] 0
$prediction
[1] "yes"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02