大数据,新一轮技术革命的“支点” 无数据不生活,创新生活模式 人工智能、物联网、机器人、共享经济,这些要素相互叠加后,世界上出现了创造新型生活方式的机会。毋庸讳言,这也是新的经济增长机会。而所有 ...
2018-01-14大数据对企业决策的变革性影响 大数据对企业决策的变革性影响 ( 一) 决策主体从“精英式”过渡到“大众化” 传统的营销决策包括“核心竞争力”和“定位”理论,前者关注客户的长期价值, “定位”理论以产品 ...
2018-01-14车联网应对大数据时代的方法 历史的发展势不可挡,互联网、移动互联网、大数据时代以人们应接不暇的速度改变着人们的生活。在物联网、云计算等信息技术的强势推动下,跨界融合成为时下最流行的形式;再者,我国 ...
2018-01-13大数据时代,蹩脚的物联网会扼杀创新 当我们畅想和拥抱物联网带来的变化的时候,也许会发现它带来的坏处比好处更多。 物联网(IoT)的概念可以追溯到80年代早期,卡内基梅隆大学的一台可乐机被连接到互联网,以 ...
2018-01-13大数据:从“技术驱动”转向“应用驱动” 继物联网、云计算之后,大数据已经成为当前信息技术产业最受关注的概念之一。大数据时代的来临,使得领域和行业边界愈加模糊,应用创新超越技术本身,生产模式向服务化 ...
2018-01-12
大数据的安全理解及应对策略研究 大数据的产生使数据分析与应用更加复杂,难以管理。据统计,过去3年里全球产生的数据量比以往400年的数据加起来还多,这些数据包括文档、图片、视频、Web页面、电子邮件、微博 ...
2018-01-12
大数据应用价值发现的三大方法 关于大数据的讨论,一方面人们需要厘清大数据的概念,开发适用的大数据系统和工具,探索大数据的应用模式等,另一方面人们更关心如何将大数据的价值变现。这对于一个企业来说尤其 ...
2018-01-11中小企业大数据应用之道:思维在于借力 大数据思维 要想大数据落地,特别是中小企业,首先得有大数据思维,否则大数据的案例不能直接借鉴,自己摸索又怕不专业、坑太多。 何谓大数据思维,个人认为不是什么决 ...
2018-01-11大数据+分析学 数字油田的两把利剑 在石油和天然气行业,数据都是以太字节(TB)和拍字节(PB)来表示的。这两个词语对于你来说或许有些陌生,下面我给你打个比方,一切就清晰明了了。 一个吉字节(GB)相当于七分 ...
2018-01-10大数据分析思路的4点心得 大数据分析能力对于一名产品经理来说是最基本的能力。 在面试的过程中,社招会有面试官会问你以往你负责的产品的相关数据,如何看待这些数据,如何通过这些数据来做接下来的产品优化 ...
2018-01-10
数据流程图和数据结构是需求分析中不可缺少的一环 需求分析活动要完成4项任务,分别是: 问题识别 评价和综合 形成规格说明 评审规格说明 这4项任务中,“问题识别”是要识别出用户提出软件需求 ...
2018-01-09人人都应学会的4个数据分析思路 数据分析能力对于一名产品经理来说是最基本的能力。 在面试的过程中,社招会有面试官会问你以往你负责的产品的相关数据,如何看待这些数据,如何通过这些数据来做接下来的产 ...
2018-01-09
2018年技术预测:五大危机还是五大机遇 预测就像是公共巴士,要么没人来,要么就好几个人一起来。不仅如此,它们比你想的要来的慢,而且只是把你带到了路边。它们还非常热闹,充满了你早上通勤时不想听见的种 ...
2018-01-08大数据下的企业信息化建设 在各种媒体的连篇累牍的报到和宣传下,我们的大多数企业对“大数据”一词想必都不陌生。无论是对于走在社会发展前沿的互联网、IT产业,亦或是传统的医药、交通行业,大数据必将带来难 ...
2018-01-08大数据应用对网络工程师提出新要求 在大数据时代,人们很少谈论跟网络相关的话题,仿佛网络与大数据是风马牛不相及的两回事。事实上,网络不仅跟大数据应用息息相关,而且还发挥了非常重要的作用。但对于很多网 ...
2018-01-07
大数据下的银行是“不作不死 随着新技术的不断引入,银行业新的想象空间也在不断打开。大数据,无疑是去年以来最受热议的技术之一,它与互联网的深度融合,甚至能够让徘徊在银行门口之外的资本有了颠覆传统的豪 ...
2018-01-07
大数据时代必须破解的重大现实课题 当今,社会信息化和网络化的发展导致数据爆炸式增长,全球数据量大约每两年翻一番,这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。大数据时代已经到来,大 ...
2018-01-06浅析大数据发展趋势 虽然大数据仍在起步阶段,存在诸多挑战,但未来的发展依然非常乐观。大数据的发展呈现八大趋势:数据资源化,将成为最有价值的资产;大数据在更多的传统行业的企业管理落地;大数据和传统商 ...
2018-01-06
制造业利用大数据的要领 在近几年里, “大数据”已经完全占据了主流分析师和商业媒体的想象力。以大数据为基础的新一代信息驱动企业的决策正在成为主流,而且,越来越多的企业正在选择通过利用无数相互连接的 ...
2018-01-05
大数据需不需要备份和灾难恢复 大数据应用的发展趋势是在拥有大存储容量的同时配备用于执行数据分析的融合硬件设备与分析软件包。这些应用通常不会用于处理运营数据;相反,用户会通过查询数据来分析过去的产品 ...
2018-01-05在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07