
大数据时代必须破解的重大现实课题
当今,社会信息化和网络化的发展导致数据爆炸式增长,全球数据量大约每两年翻一番,这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。大数据时代已经到来,大数据渗透到各个行业领域,逐渐成为一种生产要素发挥着重要作用,成为未来竞争的制高点。然而,大数据掀起新一轮生产率提高和生活方式改变的同时,随之而来的是安全挑战,这是我们必须破解的重大现实课题。
大数据隐患
面临三大风险问题
数据生命周期安全问题。伴随着大数据技术和应用的快速发展,在大数据生命周期的各个阶段、各个环节,越来越多的安全隐患逐渐暴露出来。比如,大数据传输环节,除了存在泄漏、篡改等风险外,还可能被数据流攻击者利用,数据在传播中可能出现逐步失真等。又如,大数据处理环节,除数据非授权使用和被破坏的风险外,由于大数据的异构、多源、关联等特点,即使多个数据集各自脱敏处理,数据集仍然存在因关联分析而造成个人信息泄漏的风险。
基础设施安全问题。作为大数据汇集的主要载体和基础设施,云计算为大数据提供了存储场所、访问通道、虚拟化的数据处理空间。因此,云平台中存储数据的安全问题也成为阻碍大数据发展的主要因素。在云计算安全方面,云安全联盟2016年发布的云安全十二大威胁中,“数据泄露”高居榜首。美国国家标准技术研究院指出安全是公共云计算面临的最大障碍,潜在风险包括:一是云计算环境复杂,产生了比较大的受攻击面;二是多租户共享计算资源,增加了网络和计算基础设施的风险,一个用户的数据和应用可能在无意中暴露给其他用户;三是公共云计算通过互联网交付,用户的应用和数据面临来自网络和暴露接口的威胁;四是用户失去了对系统和数据在物理和逻辑上的控制。
个人隐私安全问题。在现有隐私保护法规不健全、隐私保护技术不完善的条件下,互联网上的个人隐私泄露失去管控,微信、微博、QQ等社交软件掌握着用户的社会关系,监控系统记录着人们的聊天、上网、出行记录,网上支付、购物网站记录着人们的消费行为。但在大数据时代,人们面临的威胁不仅限于个人隐私泄露,还在于基于大数据对人的状态和行为的预测。近年来,国内多省社保系统个人信息泄露、12306账号信息泄露等大数据安全事件表明,大数据未被妥善处理会对用户隐私造成极大的侵害。因此,在大数据环境下,如何管理好数据,在保证数据使用效益的同时保护个人隐私,是大数据时代面临的巨大挑战之一。
大数据安全
全方位加强数据安全治理
我国“十三五”规划纲要提出要实施国家大数据战略,强化信息安全保障。为保障大数据发展战略的顺利实施,应大力加强数据安全治理。
加强数据安全管理。明确数据安全治理目标,解决“云、管、端”三类数据的违规监控和泄漏防护问题,对涉及敏感内容的数据存储、传输、使用过程进行全方位监控、审计、实时防护,防止敏感数据泄露、丢失,确保数据的价值实现、运营合规和风险可控。建立数据安全治理的保障机制,包括确立数据安全治理的战略;健全数据安全治理的组织机制,明确数据安全管理的角色和责任;建立满足业务战略的数据架构和架构管理策略;识别政策、法律、法规要求,跟踪相关标准规范的进展并采取措施予以积极落实。根据确定的数据安全角色和责任,分解落实各项数据安全治理任务,有序开展各项治理工作。建立对数据安全治理的监督评估机制,提升数据安全治理的有效性。
加强敏感数据管控。采取相关技术措施,加强对敏感数据的管控。既要开展数据分级分类工作,对敏感数据进行识别定义,为采用技术手段实现对敏感数据的安全管控提供基础;又要建设数据安全管控系统,在数据分级分类基础上,对传统环境和云计算环境下的数据进行深度内容识别,并通过展示界面实时、动态展示敏感信息分布态势、传输态势、使用态势及整体安全风险态势;还要对涉及敏感内容的数据存储、传输、使用过程实现全方位监控、审计、实时防护。
加强平台安全防护。大数据承载平台应遵循国家网络安全等级保护制度的要求,根据确定的安全等级采取相应的安全保障策略。从物理、网络、主机、应用、数据和管理等多个层面,构建层次化的纵深安全防御体系,有效保障各业务应用系统、大数据软件平台及承载其运行的云计算平台的系统安全。既要加强大数据资源、环境、系统整体防护,建设多重防护、多级互联体系结构,确保大数据处理环境可信;又要加强处理流程控制,防止内部攻击,提高计算节点自我免疫能力;还要加强全局层面安全机制,制定数据控制策略,梳理数据处理流程,建立安全的数据处理模式;更要加强技术平台支持下的安全管理。
加强数据安全评估。通过深入贯彻等级保护、风险评估等相关制度,对数据安全治理实施的符合性和质量进行监督评估,形成数据安全治理的闭环管理。要开展对大数据承载平台的定期安全评估;加强对大数据相关信息系统的安全评估;跟踪大数据相关评估标准的进展,适时开展对大数据安全的数据可信性和隐私保护程度等指标的评估。通过体系化的大数据安全评估,促使大数据系统在数据安全方面达到运营合规、风险可控的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18