京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代必须破解的重大现实课题
当今,社会信息化和网络化的发展导致数据爆炸式增长,全球数据量大约每两年翻一番,这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。大数据时代已经到来,大数据渗透到各个行业领域,逐渐成为一种生产要素发挥着重要作用,成为未来竞争的制高点。然而,大数据掀起新一轮生产率提高和生活方式改变的同时,随之而来的是安全挑战,这是我们必须破解的重大现实课题。
大数据隐患
面临三大风险问题
数据生命周期安全问题。伴随着大数据技术和应用的快速发展,在大数据生命周期的各个阶段、各个环节,越来越多的安全隐患逐渐暴露出来。比如,大数据传输环节,除了存在泄漏、篡改等风险外,还可能被数据流攻击者利用,数据在传播中可能出现逐步失真等。又如,大数据处理环节,除数据非授权使用和被破坏的风险外,由于大数据的异构、多源、关联等特点,即使多个数据集各自脱敏处理,数据集仍然存在因关联分析而造成个人信息泄漏的风险。
基础设施安全问题。作为大数据汇集的主要载体和基础设施,云计算为大数据提供了存储场所、访问通道、虚拟化的数据处理空间。因此,云平台中存储数据的安全问题也成为阻碍大数据发展的主要因素。在云计算安全方面,云安全联盟2016年发布的云安全十二大威胁中,“数据泄露”高居榜首。美国国家标准技术研究院指出安全是公共云计算面临的最大障碍,潜在风险包括:一是云计算环境复杂,产生了比较大的受攻击面;二是多租户共享计算资源,增加了网络和计算基础设施的风险,一个用户的数据和应用可能在无意中暴露给其他用户;三是公共云计算通过互联网交付,用户的应用和数据面临来自网络和暴露接口的威胁;四是用户失去了对系统和数据在物理和逻辑上的控制。
个人隐私安全问题。在现有隐私保护法规不健全、隐私保护技术不完善的条件下,互联网上的个人隐私泄露失去管控,微信、微博、QQ等社交软件掌握着用户的社会关系,监控系统记录着人们的聊天、上网、出行记录,网上支付、购物网站记录着人们的消费行为。但在大数据时代,人们面临的威胁不仅限于个人隐私泄露,还在于基于大数据对人的状态和行为的预测。近年来,国内多省社保系统个人信息泄露、12306账号信息泄露等大数据安全事件表明,大数据未被妥善处理会对用户隐私造成极大的侵害。因此,在大数据环境下,如何管理好数据,在保证数据使用效益的同时保护个人隐私,是大数据时代面临的巨大挑战之一。
大数据安全
全方位加强数据安全治理
我国“十三五”规划纲要提出要实施国家大数据战略,强化信息安全保障。为保障大数据发展战略的顺利实施,应大力加强数据安全治理。
加强数据安全管理。明确数据安全治理目标,解决“云、管、端”三类数据的违规监控和泄漏防护问题,对涉及敏感内容的数据存储、传输、使用过程进行全方位监控、审计、实时防护,防止敏感数据泄露、丢失,确保数据的价值实现、运营合规和风险可控。建立数据安全治理的保障机制,包括确立数据安全治理的战略;健全数据安全治理的组织机制,明确数据安全管理的角色和责任;建立满足业务战略的数据架构和架构管理策略;识别政策、法律、法规要求,跟踪相关标准规范的进展并采取措施予以积极落实。根据确定的数据安全角色和责任,分解落实各项数据安全治理任务,有序开展各项治理工作。建立对数据安全治理的监督评估机制,提升数据安全治理的有效性。
加强敏感数据管控。采取相关技术措施,加强对敏感数据的管控。既要开展数据分级分类工作,对敏感数据进行识别定义,为采用技术手段实现对敏感数据的安全管控提供基础;又要建设数据安全管控系统,在数据分级分类基础上,对传统环境和云计算环境下的数据进行深度内容识别,并通过展示界面实时、动态展示敏感信息分布态势、传输态势、使用态势及整体安全风险态势;还要对涉及敏感内容的数据存储、传输、使用过程实现全方位监控、审计、实时防护。
加强平台安全防护。大数据承载平台应遵循国家网络安全等级保护制度的要求,根据确定的安全等级采取相应的安全保障策略。从物理、网络、主机、应用、数据和管理等多个层面,构建层次化的纵深安全防御体系,有效保障各业务应用系统、大数据软件平台及承载其运行的云计算平台的系统安全。既要加强大数据资源、环境、系统整体防护,建设多重防护、多级互联体系结构,确保大数据处理环境可信;又要加强处理流程控制,防止内部攻击,提高计算节点自我免疫能力;还要加强全局层面安全机制,制定数据控制策略,梳理数据处理流程,建立安全的数据处理模式;更要加强技术平台支持下的安全管理。
加强数据安全评估。通过深入贯彻等级保护、风险评估等相关制度,对数据安全治理实施的符合性和质量进行监督评估,形成数据安全治理的闭环管理。要开展对大数据承载平台的定期安全评估;加强对大数据相关信息系统的安全评估;跟踪大数据相关评估标准的进展,适时开展对大数据安全的数据可信性和隐私保护程度等指标的评估。通过体系化的大数据安全评估,促使大数据系统在数据安全方面达到运营合规、风险可控的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21