
大数据应用对网络工程师提出新要求
在大数据时代,人们很少谈论跟网络相关的话题,仿佛网络与大数据是风马牛不相及的两回事。事实上,网络不仅跟大数据应用息息相关,而且还发挥了非常重要的作用。但对于很多网络工程师来说,他们并没有认清这一点。
如今在一个典型的数据中心架构中,包含了大量松耦合的应用和半分布式的存储设备。一个基于Web的应用实际上是由很多组件组成的,如应用负载均衡、web服务器前端、应用后端,而且都有相应的数据库作为数据存储。这些数据库会有本地或者集中化或半分布式的物理存储设备,存储又有复制和备份的组件。所有的数据中心内部的流量都需要将正确的数据传送给应用用户。这里的用户可以是一个人,也可以是另外的一个应用。
上述这种较为传统的分布式应用,其通信方式是相对直接的,很好理解。通过基础的测量和分析工具,你就可以完整地了解到一个应用的各个组件之间的运转方式,它们之间是如何交互的以及它们需要什么样的网络环境等等。在部署应用之前,开发人员几乎不用为网络工程师提供具体的需求和指导。而在这个应用走完至少一个扩展和性能调整周期之后,基本就会形成一个固定的模式并保持下去。对于网络工程师来说,他们要做的就是确保能够为这一模式提供合理的网络连接。
然而针对大数据应用,它给我们提出了新的课题。大数据应用往往是以高度并行化的方式运行,它们部署在一个分布式系统当中,这需要在基础设施当中进行海量数据的“大挪移”.大数据应用在设计的时候,会假定数据与其消费方式都是持续分布式的,并且在一个大数据集群当中复制到各个节点。许多应用都要应对多种不同的数据分析任务。而数据集以及数据生成方式更是多种多样,因此它们对于网络的要求也会有所不同。正式基于这一点,我们就需要一个更加动态的网络环境来满足大数据应用的需求。
我们看到,如今有很多大数据应用是部署在1GbE网络上的。很多企业认为,网络根本就不叫个事儿,大数据只不过是一个计算密集型的项目。这其实是最基本的错误理解。事实上,许多大数据应用都是在处理半实时的流数据,每个数据集只需要一个相对较小的计算资源。而这些数据需要新型的连接方式,这是我们以前所没有遇到过的。
上周我跟一个Ad Tech的工程师聊,这是一家发展速度非常快的企业,提供市场营销与广告相关的技术解决方案。他目前管理了一个大数据集群,其中有200台物理服务器,使用了市场中最高端的网络交换机。在开放一半的可用端口之前,网络堵塞问题就已经非常严重了。这个集群中,机架间需要每秒钟传输700GB甚至1TB的流量。说实话,市面上很少有网络设备能够应对这样的需求。
有人会说,多加带宽不就完了嘛。而Ad
Tech公司的这个案例,恰恰印证了我们所说的,企业在处理这样的应用需求时需要重新思考他们的网络架构。传统的思路已经不能跟支持新的应用和新的需求了。应用在发生变化,服务器、存储以及它们的工作方式也在发生变化,网络工程师需要积极拥抱这种变化。
但惧怕或者逃避不能解决任何问题,不管你喜不喜欢,该来的总归要来。网络工程师要尽最大努力理解它们的需求,摆脱传统思维的束缚,然后思考什么样的网络能够解决这些问题。因为网络在其中起到了非常重要的作用,它对大数据应用的性能会产生巨大影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15