
大数据,新一轮技术革命的“支点”
无数据不生活,创新生活模式
人工智能、物联网、机器人、共享经济,这些要素相互叠加后,世界上出现了创造新型生活方式的机会。毋庸讳言,这也是新的经济增长机会。而所有这些都离不开大数据,超大量、随时随地产生的数据。
新技术要素相互叠加对生活影响的根本在哪里?日本《产经新闻》日前刊登文章认为,那就是在各个领域正在出现传统生活模式被取代的现象。比如出行和旅游,以往依赖路上找出租车或通过旅行社预订旅馆。随着大数据累积,旅行者自己也可利用基于数据的评估系统来作出判断,以保证旅途安全和舒适。优步、滴滴、爱彼迎……从大数据领域走在世界前列的企业不胜枚举。
在金融领域,那就是金融科技。以往如果离开了银行这一社会基础设施,人们就不能放心地存款、结算,但通过新技术与大数据的组合,就不断出现更加方便和廉价的存款、结算平台。在中国和美国,都存在IT相关企业推动金融科技的现象。
数据创造价值,产业迎来机遇
当前社会的数据资源正呈指数级增长。清华大学信息技术研究院研究员薛一波说:“现在的突出问题,一是部分传统企业行业和机构缺乏新思维,没有意识到,甚至不清楚大数据这种战略资源的价值所在;二是缺乏机构间融合和深度合作,有数据的不知怎么用,会用的没有数据。”
他认为,需要打破条条框框、利益分割,共同促进大数据产业链的健康发展,“除消费领域外,更多传统企业的大数据思维应成为行业共识”。
传统企业究竟如何赶上大数据的这列发展“快车”呢?
“喷气式客机一起飞,就会产生海量数据,”薛一波举例说,“分析客机实时传输的大数据,可实时掌握飞机的运行状态,提前预警和发现潜在问题,采取预防、维修等措施,大大减少故障率。”
类似技术也应用在高铁上。薛一波说,以往铁路工人在铁轨上敲敲打打,通过声音检查问题;如今,高铁上的各种传感设备可实时传回车辆数据,通过大数据分析,即可实现故障预警、诊断、排查和定位,提高效率,降低成本。
他说,大数据分析可大幅提升传统行业的运行效率、降低运维成本、提升数据价值。在欧美等发达国家,工业大数据应用已非常普及。
“大数据技术推动传统产业升级是必然的,”暨南大学信息科学技术学院/网络空间安全学院副院长郑力明对记者说,比如,德国积极推动包含工业大数据应用在内的“工业4.0”计划,正是要进一步促使工业生产与信息技术融合,使供应、制造、销售各环节智慧化。
如今,大数据巨大的商业价值正成为推动经济变革的新引擎。中国工信部已印发《大数据产业发展规划(2016-2020年)》,提出到2020年基本形成技术先进、应用繁荣、保障有力的大数据产业体系。大数据相关产品和服务业务收入将突破1万亿元人民币,年均复合增长率保持30%左右。
美国高德纳咨询公司去年7月估计,未来5年内,仅用于解析大数据的云计算一项,IT产业就将有超过1万亿美元支出,直接或间接促进企业向云计算领域转型。
消除“数据烟囱”,打通“信息动脉”
统计显示,目前中国信息数据资源80%以上掌握在各级政府部门手里,“深藏闺中”造成极大浪费。一些地方和部门的信息化建设各自为政,形成“数据烟囱”和“信息孤岛”,给应用带来不便。
中国人民大学“中国调查与数据中心”副主任、社会学系副教授王卫东说,数据开放意义重大。因为大数据最初是用数据模型采集的各种信息的总和,开放数据能帮助研究人员找到之前看来不相干的事物间的关联,然后据此找到更精确的计算参数。开放程度越高,参数设置和分析就会越精准,得出的信息参考价值越高。
正因如此,“开放数据”已成为一股世界性运动,各国政府则成为这场运动中最重要的对象。推动信息跨部门跨层级共享共用,加快推进公共数据资源向社会开放,已经成为政府工作的重要目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01