阿隆·梅-拉兹,副总裁数据与洞察,银行Hapoalim 几个星期前,我带着我的狗出去散步时,偶然发现了我的邻居。她来自统计学背景,她问我在数据世界中的不同角色,试图找出她下一步的职业发展方向。在我 ...
2022-03-30comments 作者Ian Xiao,德勤营销与人工智能实践. 大约在这座城市因新冠肺炎而被封锁的3周前,我和一个朋友坐在多伦多市中心我们最喜欢的泰国餐馆里。 “我应该留在数据科学吗?如果没有,我下一步该 ...
2022-03-30comments 数据科学家Michael Galarnyk著 我以前写过《如何构建数据科学投资组合》,其中包括向潜在的雇主展示你能做什么而不是告诉他们你能做什么的重要性。这个博客利用aSuccess is Iceberg ImagebyOry ...
2022-03-30CDA数据分析师等级认证考试 (Certified Data Analyst Certificate) CDA(Certified Data Analyst),即“CDA数据分析师”,是大数据和人工智能时代面向国际范围全行业的 ...
2022-03-18注意:这是本文的第一部分。您可以在这里阅读第二部分。 A/B测试,又称受控实验,在工业上被广泛应用于产品上市决策。它允许科技公司用一个用户子集来评估一个产品/特性,从而推断该产品可能如何被所有用户 ...
2022-03-14麦迪逊·亨特,地球科学学士学位本科生 当涉及到进入数据科学领域时,你需要使用书中的每一个技巧来给自己一个优势,推动你越过终点线。 那么,为什么不尝试效仿行业中最好的人的习惯呢? 这篇 ...
2022-03-14数据科学是一个不断扩展的领域。更多的行业继续依赖技术来收集和处理重要的信息,数据科学家的需求很高。然而,找到一份适合你需要的工作有时是一个挑战。在这些情况下,你可以转向自由职业。 自由职业者 ...
2022-03-14作者Frederik Bussler,显然AI的增长营销主管 AI饱和度 我经常分享学习人工智能和数据科学的资源,无论是谷歌或哈佛的课程,还是YouTube的全长教程。 与此同时,我听到了这样的担忧:“现在学习AI和 ...
2022-03-14多里安·马丁,GetGoodgrade 你想涉足数据工程吗? 好主意. 很多公司都在寻找数据工程师--如果你在LinkedIn上搜索“数据工程师”,仅在美国就会得到88,000多个好的职位。每个人都可以使用远程工作选 ...
2022-03-14当你开始从事数据科学方面的工作时,一些需要获得的技能将是显而易见的。你知道你需要在编码、分析和数学方面的经验,但你也应该培养一些软技能。虽然当你想到数据科学时,这些可能不会立即浮现在脑海中,但它 ...
2022-03-14作者尤金·颜,亚马逊应用科学家 “与其手动检查我们的数据,为什么不试试领英的做法呢?它帮助他们实现了95%的准确率和80%的召回率。“ 然后我的队友分享了如何使用k-最近邻来识别不一致的标签(在职位 ...
2022-03-14金融技术实施专家大卫·摩尔 招聘人员正在使用越来越复杂的软件和工具来扫描简历,并将其与张贴的工作职位和工作规格进行匹配。如果你的简历是通用的,或者工作说明模糊和/或通用,这些工具将对你不利。AI ...
2022-03-14由Mihail Eric著,《机器学习研究与教育》。 参加KDnuggets工作满意度调查,部分灵感来自这个博客。 以下是受此帖子启发的KDnuggets漫画 数据。它无处不在,我们只会得到更多。在过去的5-1 ...
2022-03-14由Polly Mitchell-Guthrie,副总裁,行业拓展和思想领导,Kinaxis。 如果一位数据科学总监领导分析团队超过10年,她的团队因其工作获奖,在会议上积极发言,并且拥有顶级项目的工业工程博士学位,你会雇佣 ...
2022-03-14获得面试对许多工作来说自然是必不可少的,数据科学工作也不例外。虽然关于这一主题的资源肯定不缺乏,但实际可行的建议却很少。在我找工作的过程中,我知道超过70%的求职者是通过某种形式的关系网找到工 ...
2022-03-14麦迪逊·亨特,地球科学学士学位本科生 无论你是刚毕业的,还是想换个职业的人,或者是一只类似于上面的猫,数据科学领域充满了现代工人清单上几乎每一个框中的工作。在数据科学领域工作可以让你有机会获得 ...
2022-03-14作者Yulia Lukashina,技术作家。 我完全相信每个人都能做好(赚到好钱!)只有在他们喜欢做的工作中。如果你对你的任务感到无聊,每天都不得不强迫自己,你就不能交付高质量的结果。 但如果数据科学让 ...
2022-03-14数据科学家是当今最受欢迎的专业人士之一。随着数据在现代商业中继续发挥越来越突出的作用,这个行业只会变得更有价值。考虑到这一前景,这是一个理想的时间追求作为一个数据科学家的职业生涯。 成为一 ...
2022-03-14作者安德里亚·劳拉,自由作家 “数据科学家”的工作岗位和个人资料每年都在变化。它的工资也是如此,有趣的是,两者都在不断上涨。 随着数据科学家的平均工资突破12.5万美元大关,职位空缺数量增长65 ...
2022-03-14作者:PerceptiLabs联合创始人兼首席执行官马丁·伊萨克森。 长期以来,版本控制工具一直是信息工作者的主要工具,尤其是那些需要在代码库上存储和协作的地方,同时维护完整的更改历史的开发人员。 多年 ...
2022-03-14在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13