Gradient Boosting Decision Tree (GBDT) 和 Extreme Gradient Boosting (XGBoost) 都是目前机器学习领域中非常流行的算法。两种算法都采用了 boosting 方法来提高分类或回归效果,但在实现细节上还是有一些区别的 ...
2023-03-22PyTorch是一个非常流行的深度学习框架,它提供了丰富的函数库和工具包来简化神经网络的实现过程。然而,在训练大型模型或处理大规模数据集时,显存消耗可能会成为问题。本文将分享一些PyTorch中节省显存的小技巧。 ...
2023-03-22Kubernetes(简称 K8s)是一个开源的容器编排工具,被广泛用于大规模部署和管理容器化应用程序。它在解决云原生架构中的各种挑战方面发挥着重要作用。本文将详细探讨 Kubernetes 解决了哪些问题,并为什么它成为了现 ...
2023-03-22正则表达式是一种强大的文本匹配工具,可以用于从文本中提取所需信息。在某些情况下,我们需要获取正则表达式中最后一个匹配项。这篇文章将介绍如何使用不同编程语言和正则表达式引擎来实现这个功能。 首先,让我们 ...
2023-03-21Elasticsearch是一个开源搜索引擎,可以快速地搜索和分析大规模的数据。MySQL是一个广泛使用的关系型数据库管理系统。结合Elasticsearch与MySQL一起使用,可以使得数据的搜索与查询更为高效。 以下是如何结合Elastic ...
2023-03-21MySQL 是一个流行的关系型数据库管理系统,被广泛用于各种应用程序中。当表需要增加新的字段时,通常会使用 ALTER TABLE 语句来完成这个任务。然而,对于大型的表,这个过程可能会导致锁表,从而影响到业务运营和 ...
2023-03-21在R语言中,我们可以使用不同的方法筛选需要的行,其中一个方法是通过行名称进行筛选。本篇文章将介绍如何使用R语言根据行名称筛选需要的行。 使用行名称筛选数据框中的行 首先,我们要了解如何访问数据框中的行。 ...
2023-03-21深度学习在过去几年中已经成为了计算机科学领域的一个热门话题。随着越来越多的研究者和工程师对深度学习进行探索,并且采用PyTorch等流行的深度学习框架,GPU也成为了训练深度学习模型时主要的计算资源。然而,在实 ...
2023-03-21Python是一种功能强大的编程语言,它包含了许多常用的开发工具和库。Pandas是其中一个非常流行的数据处理库,它提供了各种各样的方法来处理和分析数据。 在Pandas中,相减两个DataFrame类似于执行SQL中的JOIN操 ...
2023-03-21Pandas是Python中用于数据分析和处理的库。在实际应用中,我们经常需要对数据进行筛选、排序等操作。有时候,我们需要将一些筛选出来的行复制到一个新的DataFrame中。这个问题看似简单,但在实际应用中却有很多细节 ...
2023-03-21TensorFlow是一个广泛使用的开源机器学习框架,它提供了许多工具和API,使得深度学习变得更加容易。其中包含名为name_scope和variable_scope的两种上下文管理器,用于帮助开发人员组织TensorFlow图中的操作并确保 ...
2023-03-20线性回归是一种广泛应用于数据分析的统计方法, 它用于研究两个变量之间的关系以及预测一个变量对另一个变量的影响。 SPSS是一种流行的数据分析软件,它具有强大的线性回归分析功能。 在这篇文章中,我们将讨论如何 ...
2023-03-15MySQL是一种流行的关系型数据库管理系统,它提供了一个名为binlog的功能,用于记录数据库中所发生的更改。二进制日志(binlog)是MySQL中的一种日志文件,它记录了所有对MySQL数据库进行更改操作的详细信息,包括增 ...
2023-03-15SPSS是一种常用的统计软件,可以用来进行验证性因子分析。下面将为您介绍如何在SPSS中实现这个过程。 步骤1:准备数据 在进行验证性因子分析之前,需要对数据进行预处理。首先,需要确保数据集中没有缺失值 ...
2023-03-15ECharts是一个开源的数据可视化库,可以帮助用户轻松地创建各种类型的图表,包括折线图。在ECharts中,通过设置相关的参数和属性可以实现许多高级功能,如在折线图的每个折点上显示数值。本文将介绍如何使用EChart ...
2023-03-15SPSS是一种常用的统计分析软件,因子分析是其中一个常用的方法之一。在进行因子分析时,总方差解释和碎石图都是非常重要的概念。 总方差解释是指因子解释的数据变异程度,通常使用特征值来表示。特征值越大,说 ...
2023-03-15神经网络是一种模拟人脑的计算模型,具有自主学习和自我调整的能力。在神经网络中,融合特征的方式有很多种,其中通过add的方式进行特征融合是比较常见的方法。 在神经网络中,每层都会提取出输入数据的一组特征,这 ...
2023-03-15在Kafka分布式的情况下,如何保证消息的顺序是一个非常重要的问题。由于Kafka是一个分布式系统,它将消息分配到多个节点上进行处理和存储,这意味着消息可能会以不同的顺序到达不同的节点。为了解决这个问题,Kafka ...
2023-03-15可能的文章: 在进行数据分析时,我们通常会使用相关分析来探索两个变量之间的关系。然而,有时即使通过显著性检验,相关系数却很低,这该怎么解释呢? 首先,我们需要明确一点:显著性检验只能告诉我们样本数 ...
2023-03-15Pandas是一个功能强大的Python库,用于数据处理和分析。其中之一的常见操作是在DataFrame中添加新的列,并根据某些条件对其进行赋值。在本篇文章中,我们将详细介绍如何使用Pandas新增一列并按条件赋值。 首先 ...
2023-03-15在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13