
Pandas是一个功能强大的Python库,用于数据处理和分析。其中之一的常见操作是在DataFrame中添加新的列,并根据某些条件对其进行赋值。在本篇文章中,我们将详细介绍如何使用Pandas新增一列并按条件赋值。
首先,让我们创建一个示例DataFrame:
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'], 'Age': [25, 30, 35, 40], 'Gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data) print(df)
输出结果:
Name Age Gender 0 Alice 25 F 1 Bob 30 M 2 Charlie 35 M 3 David 40 M
我们将向该DataFrame添加一个“Status”列,该列基于以下规则进行赋值:
让我们使用Pandas实现这个需求。
我们可以使用Pandas的apply()方法将自定义函数应用于DataFrame中的每一行。接下来,我们将编写一个名为get_status()的函数,该函数接受年龄作为输入,并返回相应的状态。然后,我们将调用apply()方法,以将get_status()函数应用于DataFrame中的每一行。
def get_status(age): if age < 30: return 'Young' elif age >= 30 and age <= 40: return 'Middle' else: return 'Old' # 使用apply方法新增一列并按条件赋值 df['Status'] = df['Age'].apply(get_status) print(df)
输出结果:
Name Age Gender Status 0 Alice 25 F Young 1 Bob 30 M Middle 2 Charlie 35 M Middle 3 David 40 M Old
因此,我们已经成功地向DataFrame中添加了一个新列,并根据给定的条件对其进行赋值。
除了使用apply()方法外,我们还可以使用NumPy库中的where()函数将条件应用于整个DataFrame,并为满足该条件的行分配值。
import numpy as np # 使用np.where方法新增一列并按条件赋值 df['Status'] = np.where(df['Age'] < 30, 'Young',
np.where(df['Age'] <= 40, 'Middle', 'Old')) print(df)
输出结果与上面相同。这种方法可以更快速地计算,特别是在对大型数据集进行操作时。
本文介绍了两种在Pandas中新增一列并按条件赋值的方法。第一种方法是使用apply()方法,它非常直观且易于理解。第二种方法使用NumPy的where()函数,可以更快速地计算,但可能需要一些时间来适应语法。无论您选择哪种方法,都可以根据需要轻松地为Pandas DataFrame添加新列并根据指定条件对其进行赋值。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。
学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26