
SPSS是一种常用的统计分析软件,因子分析是其中一个常用的方法之一。在进行因子分析时,总方差解释和碎石图都是非常重要的概念。
总方差解释是指因子解释的数据变异程度,通常使用特征值来表示。特征值越大,说明因子所解释的数据变异程度越高。在进行因子分析时,我们通常会选择保留特征值最大的前几个因子,因为它们对原始数据的解释能力更强。而对于保留多少个因子,通常需要根据实际情况和经验进行判断。
碎石图(Scree Plot)是一种用于帮助确定保留多少个因子的图表。在碎石图中,横轴表示因子数量,纵轴表示特征值。我们通常会观察特征值随因子数量的变化趋势,如果出现了一个明显的“拐点”,那么这个拐点前的因子就是需要保留的因子数量。这是因为拐点前的因子所解释的数据变异程度较高,而拐点后的因子则解释的数据变异程度较低,不具有实际意义。
总体来说,总方差解释和碎石图都是帮助我们确定保留多少个因子的重要工具。然而,在进行因子分析时,还需要注意以下几点:
首先,因子分析应该基于合理的理论基础。我们需要明确研究问题,并构建恰当的假设和理论模型,然后再进行因子分析。否则,即使得到了合适的因子数量和结构,也可能无法得到可靠的结论。
其次,因子旋转也是非常重要的。因子旋转可以调整因子之间的关系,使得因子更加清晰、易于解释。在进行因子旋转时,我们需要根据实际需求选择合适的旋转方法,并进行适当的解释。
最后,我们还需要对因子分析结果进行验证。这可以通过内部一致性检验、测试-重新测试法或者交叉验证等方法进行。只有通过验证,才能够确保因子分析结果的可信度和稳定性。
综上所述,总方差解释和碎石图是因子分析中两个非常重要的概念。通过它们,我们可以确定保留多少个因子,并初步了解因子数量和结构。但是,在进行因子分析时,还需要注意其他方面,如合理的理论基础、因子旋转和结果验证等,从而获得可靠的结论。
若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10