京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者Frederik Bussler,显然AI的增长营销主管
我经常分享学习人工智能和数据科学的资源,无论是谷歌或哈佛的课程,还是YouTube的全长教程。
与此同时,我听到了这样的担忧:“现在学习AI和数据科学还来得及吗?”
令人担忧的是,随着数百万学生学习机器学习,该领域正变得饱和。毕竟,人工智能的工作数量有限,尤其是在全球经济衰退期间。
吴恩达在Coursera上的著名机器学习课程有接近400万学生。
在写这篇文章的时候,如果你在LinkedIn上搜索“机器学习”,你会发现超过10万个工作岗位。
显然,学生人数远远多于公开职位--仅从一门Coursera课程的学生人数来看,这一比例几乎为40:1。
尽管如此,学习人工智能仍然是值得的,原因有很多。
首先,让我们谈谈内部创业。人工智能的构建和部署变得比以往任何时候都更容易、更快--尤其是考虑到类似的无代码人工智能工具。人工智能--这意味着员工可以通过将人工智能添加到他们的技能中来增加更多的价值。
这些内部创业者在他们的组织中发现人工智能用例并没有增加LinkedIn上的空缺职位数量,但有无数的例子。
任何员工都有一个巨大的动力去成为一名人工智能内部设计师:将他们工作中重复、枯燥的部分自动化,并专注于创造性的、以人为中心的任务。更不用说,AI技能可以提振你的薪水和事业。
例如,营销人员可以使用人工智能来预测客户行为,构建人物角色,并识别顶级人口统计数据。零售员工可以优化分类,预测库存消耗,预测人员需求,等等。保险员工可以使用人工智能来预测保险索赔、诉讼风险、代位求偿机会等。
人工智能内部创业的可能性是无穷无尽的。
还有一个巨大的机会领域没有包含在大约10万个机器学习工作中:创业。
企业家精神是内部创业风险更高的另一面。这意味着走自己的路,寻找新的方法在市场上增加价值,往往没有任何支持、支持或稳定。
同时,这种高风险伴随着高回报的潜力。
假设你作为第30名员工加入了一家硅谷初创公司(还很早),你是你所在领域的顶尖工程师之一。根据Holloway的说法,你可以预期0.25%-0.5%的股权。
如果你独自创业,作为一个单独的创始人,你有100%的股权可以开始。通过引入自己的联合创始人、员工和投资者,这一数字将会减少,但还有更多的潜力。
即使你对内部创业、创业或找到一个新角色不感兴趣,也有必要不断学习。
人工智能现在遍布每个行业,从你在亚马逊、Spotify、Netflix或Tinder上获得的建议,到你在谷歌或YouTube上看到的搜索结果,甚至到新冠肺炎跟踪、疫苗开发和疫苗推出。
为了了解最新技术,真正了解当今世界,学习人工智能是必须的。
学习AI是值得的,而且永远都是。即使就业市场已经饱和(现在还没有饱和,因为有资格的人仍然有工作机会),创造性的内部创业者和企业家总是有潜力的。为了保持相关性,AI技能正迅速成为必备技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12