京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者Frederik Bussler,显然AI的增长营销主管
我经常分享学习人工智能和数据科学的资源,无论是谷歌或哈佛的课程,还是YouTube的全长教程。
与此同时,我听到了这样的担忧:“现在学习AI和数据科学还来得及吗?”
令人担忧的是,随着数百万学生学习机器学习,该领域正变得饱和。毕竟,人工智能的工作数量有限,尤其是在全球经济衰退期间。
吴恩达在Coursera上的著名机器学习课程有接近400万学生。
在写这篇文章的时候,如果你在LinkedIn上搜索“机器学习”,你会发现超过10万个工作岗位。
显然,学生人数远远多于公开职位--仅从一门Coursera课程的学生人数来看,这一比例几乎为40:1。
尽管如此,学习人工智能仍然是值得的,原因有很多。
首先,让我们谈谈内部创业。人工智能的构建和部署变得比以往任何时候都更容易、更快--尤其是考虑到类似的无代码人工智能工具。人工智能--这意味着员工可以通过将人工智能添加到他们的技能中来增加更多的价值。
这些内部创业者在他们的组织中发现人工智能用例并没有增加LinkedIn上的空缺职位数量,但有无数的例子。
任何员工都有一个巨大的动力去成为一名人工智能内部设计师:将他们工作中重复、枯燥的部分自动化,并专注于创造性的、以人为中心的任务。更不用说,AI技能可以提振你的薪水和事业。
例如,营销人员可以使用人工智能来预测客户行为,构建人物角色,并识别顶级人口统计数据。零售员工可以优化分类,预测库存消耗,预测人员需求,等等。保险员工可以使用人工智能来预测保险索赔、诉讼风险、代位求偿机会等。
人工智能内部创业的可能性是无穷无尽的。
还有一个巨大的机会领域没有包含在大约10万个机器学习工作中:创业。
企业家精神是内部创业风险更高的另一面。这意味着走自己的路,寻找新的方法在市场上增加价值,往往没有任何支持、支持或稳定。
同时,这种高风险伴随着高回报的潜力。
假设你作为第30名员工加入了一家硅谷初创公司(还很早),你是你所在领域的顶尖工程师之一。根据Holloway的说法,你可以预期0.25%-0.5%的股权。
如果你独自创业,作为一个单独的创始人,你有100%的股权可以开始。通过引入自己的联合创始人、员工和投资者,这一数字将会减少,但还有更多的潜力。
即使你对内部创业、创业或找到一个新角色不感兴趣,也有必要不断学习。
人工智能现在遍布每个行业,从你在亚马逊、Spotify、Netflix或Tinder上获得的建议,到你在谷歌或YouTube上看到的搜索结果,甚至到新冠肺炎跟踪、疫苗开发和疫苗推出。
为了了解最新技术,真正了解当今世界,学习人工智能是必须的。
学习AI是值得的,而且永远都是。即使就业市场已经饱和(现在还没有饱和,因为有资格的人仍然有工作机会),创造性的内部创业者和企业家总是有潜力的。为了保持相关性,AI技能正迅速成为必备技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29