
多里安·马丁,GetGoodgrade
你想涉足数据工程吗?
好主意.
很多公司都在寻找数据工程师--如果你在LinkedIn上搜索“数据工程师”,仅在美国就会得到88,000多个好的职位。每个人都可以使用远程工作选项,您可以在任何公司找到工作。但是,首先,你需要有必要的技能来成为一个好的应聘者,并被邀请参加面试。
在这篇文章中:
数据工程师四处移动大量数据,因此他们每天都要使用数据库。用于数据库的数据库技术有两种主要类型:SQL和NoSQL(下一节将详细介绍NoSQL)。
强大的SQL技能允许使用数据库构建数据仓库,将它们与其他工具集成,并为业务目的分析数据。有几种SQL类型可能是数据工程师在某个时候专门关注的(高级建模、大数据等),但要达到这些类型需要学习这种技术的基础知识。
这就是为什么所有的公司,从苹果这样的巨头到小企业,都需要他们的数据工程师是使用SQL的专家。
这是一种变得越来越流行的分布式数据存储的不同类型。简单地解释,“NoSQL”这个名称意味着基于不同于SQL的技术。
NoSQL的例子包括Apache River、BaseX、Ignite、Hazelcast、Coherence等。在你的数据工程师求职过程中,你肯定会遇到它们,所以知道如何使用它们将是一个巨大的优势。
Python是需求仍然很高的核心编程语言(事实上,它是程序员第三喜欢的语言)。数据工程师应该精通Python以便能够编写可维护、可重用和复杂的函数。这种语言高效、通用,非常适合文本分析,并为大数据支持提供了合法的基础。
学习Python很容易,这要归功于各种技能级别的可用资源。对于初学者,请随意查看以下内容:
AWS是一个流行的云平台,大多数程序员使用它来变得更加敏捷、创新和可伸缩性。数据工程团队在AWS上回复设计自动化数据流,因此您需要了解使用该工具设计和部署基于云的数据基础设施。
如果你对学习AWS感兴趣,你可能想试试在线课程或亚马逊自己的教程(就像这篇关于AWS和大数据的教程)。然后,你可以尝试一下你的知识,从亚马逊获得官方证书--这是脱颖而出成为专业人士的好方法。
Kafka是一个用于处理实时数据提要的开源处理软件平台。这意味着你可以用它来构建实时流媒体应用程序,这是企业所需要的。卡夫卡驱动的应用程序可以帮助发现和应用趋势,并几乎实时地对客户需求做出反应。
这就是为什么60%的财富100强公司在他们的应用程序中使用卡夫卡。其中包括LinkedIn、Microsoft、Netflix、爱彼迎和Target。例如,《纽约时报》使用卡夫卡来存储和分发已发布的内容到应用程序中,以使读者能够获得这些内容。
Apache Hadoop是数据工程师用来存储和分析大量信息的开源框架。Hadoop不是一个单一的平台,而是许多支持数据集成的工具。这就是为什么它对大数据分析很有用。
如果您成为一名数据工程师,那么您将有机会使用Kafka和Hadoop进行实时数据处理、监控和报告。
写作是这份清单上的第一项软技能。这是许多有抱负的数据工程师往往忽视的东西,结果剥夺了他们自己更好的职业机会。以下是写作对数据工程师最重要的好处:
从使用免费工具如Grammarly检查你的写作开始。它会发现复杂的句子,不必要的单词,并产生建议,使写作更加连贯和清晰。
数据工程师是一个经常与不同利益相关者交流的人,包括数据分析师、首席技术提供商、开发人员、设计师、客户、机器学习工程师和其他人。
LinkedIn的研究发现,沟通--包括人际沟通--是雇主最想要的软技能。无论你是一个内向的人还是没有足够的人际沟通技巧,你都必须学习它们。
考虑从这些领域入手:
一个拥有优秀时间管理技能的数据工程师可以改进他们工作的每一个方面。在这个职业中,有很多事情会让你晚上睡不着,所以有能力规划工作日并坚持时间表是一个惊人的优势。
让数据工程师更快乐的时间管理的好处:
好的是你可以学会时间管理。有一些有用的应用程序,如Forest和HabitMinder(它们非常有助于学习规划和遵守时间表),以及许多你可以使用的书籍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29