京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多里安·马丁,GetGoodgrade
你想涉足数据工程吗?
好主意.
很多公司都在寻找数据工程师--如果你在LinkedIn上搜索“数据工程师”,仅在美国就会得到88,000多个好的职位。每个人都可以使用远程工作选项,您可以在任何公司找到工作。但是,首先,你需要有必要的技能来成为一个好的应聘者,并被邀请参加面试。
在这篇文章中:
数据工程师四处移动大量数据,因此他们每天都要使用数据库。用于数据库的数据库技术有两种主要类型:SQL和NoSQL(下一节将详细介绍NoSQL)。
强大的SQL技能允许使用数据库构建数据仓库,将它们与其他工具集成,并为业务目的分析数据。有几种SQL类型可能是数据工程师在某个时候专门关注的(高级建模、大数据等),但要达到这些类型需要学习这种技术的基础知识。
这就是为什么所有的公司,从苹果这样的巨头到小企业,都需要他们的数据工程师是使用SQL的专家。
这是一种变得越来越流行的分布式数据存储的不同类型。简单地解释,“NoSQL”这个名称意味着基于不同于SQL的技术。
NoSQL的例子包括Apache River、BaseX、Ignite、Hazelcast、Coherence等。在你的数据工程师求职过程中,你肯定会遇到它们,所以知道如何使用它们将是一个巨大的优势。
Python是需求仍然很高的核心编程语言(事实上,它是程序员第三喜欢的语言)。数据工程师应该精通Python以便能够编写可维护、可重用和复杂的函数。这种语言高效、通用,非常适合文本分析,并为大数据支持提供了合法的基础。
学习Python很容易,这要归功于各种技能级别的可用资源。对于初学者,请随意查看以下内容:
AWS是一个流行的云平台,大多数程序员使用它来变得更加敏捷、创新和可伸缩性。数据工程团队在AWS上回复设计自动化数据流,因此您需要了解使用该工具设计和部署基于云的数据基础设施。
如果你对学习AWS感兴趣,你可能想试试在线课程或亚马逊自己的教程(就像这篇关于AWS和大数据的教程)。然后,你可以尝试一下你的知识,从亚马逊获得官方证书--这是脱颖而出成为专业人士的好方法。
Kafka是一个用于处理实时数据提要的开源处理软件平台。这意味着你可以用它来构建实时流媒体应用程序,这是企业所需要的。卡夫卡驱动的应用程序可以帮助发现和应用趋势,并几乎实时地对客户需求做出反应。
这就是为什么60%的财富100强公司在他们的应用程序中使用卡夫卡。其中包括LinkedIn、Microsoft、Netflix、爱彼迎和Target。例如,《纽约时报》使用卡夫卡来存储和分发已发布的内容到应用程序中,以使读者能够获得这些内容。
Apache Hadoop是数据工程师用来存储和分析大量信息的开源框架。Hadoop不是一个单一的平台,而是许多支持数据集成的工具。这就是为什么它对大数据分析很有用。
如果您成为一名数据工程师,那么您将有机会使用Kafka和Hadoop进行实时数据处理、监控和报告。
写作是这份清单上的第一项软技能。这是许多有抱负的数据工程师往往忽视的东西,结果剥夺了他们自己更好的职业机会。以下是写作对数据工程师最重要的好处:
从使用免费工具如Grammarly检查你的写作开始。它会发现复杂的句子,不必要的单词,并产生建议,使写作更加连贯和清晰。
数据工程师是一个经常与不同利益相关者交流的人,包括数据分析师、首席技术提供商、开发人员、设计师、客户、机器学习工程师和其他人。
LinkedIn的研究发现,沟通--包括人际沟通--是雇主最想要的软技能。无论你是一个内向的人还是没有足够的人际沟通技巧,你都必须学习它们。
考虑从这些领域入手:
一个拥有优秀时间管理技能的数据工程师可以改进他们工作的每一个方面。在这个职业中,有很多事情会让你晚上睡不着,所以有能力规划工作日并坚持时间表是一个惊人的优势。
让数据工程师更快乐的时间管理的好处:
好的是你可以学会时间管理。有一些有用的应用程序,如Forest和HabitMinder(它们非常有助于学习规划和遵守时间表),以及许多你可以使用的书籍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27