
当你开始从事数据科学方面的工作时,一些需要获得的技能将是显而易见的。你知道你需要在编码、分析和数学方面的经验,但你也应该培养一些软技能。虽然当你想到数据科学时,这些可能不会立即浮现在脑海中,但它们将在你的职业生涯中发挥关键作用。
数据科学的工作需求仍然很高,但新的职位空缺正在减少,尽管比其他职业要慢。该领域的盈利能力也将吸引更多的申请者,因此竞争正在加剧。如果你想在其他应聘者中脱颖而出,这里有一些你应该培养的辅助技能。
很多工作都会寻找批判性思维能力强的应聘者,尤其是在数据科学方面。你应该能够从多个角度看待一个问题,了解如何处理它并分析你的结果。这个过程是许多数据科学应用程序的基础,即使它不是该行业独有的。
作为一名数据科学家,你需要知道如何正确地框定一个问题,而不仅仅是回答它。你必须从多个角度分析一个问题,才能找到问题的根源。在解决了一些事情之后,你应该反思这个过程,并理解为什么它会以这样的方式进行。
为了培养批判性思维技能,在业余时间从事各种解决问题的项目。尝试从多个角度来处理它们,并演示解决它们的多种方法。培养这些项目的投资组合可以向潜在的雇主展示你批判性思维的诀窍。
你可能不会认为数据科学是一个通信量很大的领域,但事实远非如此。虽然分析可能是你工作的核心,但你必须传达你的结果。数据科学涉及大量的协作和报告,因此您应该知道如何有效地这样做。
研究表明,不充分的沟通平均每年给大公司造成6240万美元的损失。如果你不能向同事和管理层解释你的问题或想法,他们就不会看到你技术能力的全部。沟通不畅会导致未优化的流程、缺点和损失。
谢天谢地,发展和展示沟通技巧相对简单。在你的整个工作和个人生活中,寻求团队项目。你在一个小组里工作得越多,你就会变得越善于沟通,你会有证据证明这一点。
一个好的数据科学家会寻找问题的解决方案,但一个伟大的科学家会寻求解决问题的方法。数据科学是一个潜在的颠覆性领域,所以您应该能够在传统框架之外进行思考。智力好奇心驱使数据科学家去发现隐藏的问题并创造性地解决它们。
雇主们想要一个有动力去学习更多的数据科学家。这种心态有助于找到解决方案,并能导致公司扩张。好奇心推动增长,所以任何企业都会很乐意找到一个智力好奇心强的候选人。
要培养智力好奇心,就开始问问题。追求独立的项目,并在过程的每一步询问为什么和如何。随着时间的推移,您将开发出一个充满独特问题解决方法和好奇心历史的投资组合。
虽然人们很容易认为科学是僵硬的,但作为一名数据科学家,你必须适应能力强。几乎在任何有技能的行业中,适应性都是可取的,因为员工经常在工作中获得新的技能,以满足不同的需求。你越能适应新的挑战,你就越能成为一个有用的员工。
数据科学影响着当今商业的许多方面,因此您必须将自己应用于各种情况。作为一个以技术为中心的领域,数据科学也一直在发展。新的技术和方法经常出现,你必须能够适应它们。
你可以通过有意地把自己置于不熟悉的环境中来发展适应能力。在你不太适应或不太了解的领域开始一些项目。自愿成为你目前工作或学校中新项目或过程的一部分。你将学习如何在这个过程中进化。
作为一名数据科学家,你应该有可靠的时间管理技能。它可能是一个要求很高的领域,在今天快节奏的工作环境中很容易感到不知所措。如果你能有效地管理你的时间,你就会更有效率,避免倦怠。
一项研究发现,65%的美国工人报告说工作压力造成了困难,10%的人说问题很严重。时间管理技巧可以帮你减轻这种压力。结果,你会感觉更好,你的工作也会改进。
你可以开始在目前的职位上或在课业中应用时间管理技术。测试不同的策略,比如设置计时器和对基本任务进行优先级排序,并找到最适合你的方法或组合。然后你可以向潜在的雇主解释你如何利用这些来有效地管理你的时间。
当您努力获得数据科学所需的经验和技术技能时,请记住这些支持技能。如果你能培养这些能力,你会成为一个更有价值的候选人。即使你已经在相关领域工作,你也可以开始应用这些来最大限度地发挥你的潜力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29