京公网安备 11010802034615号
经营许可证编号:京B2-20210330
获得面试对许多工作来说自然是必不可少的,数据科学工作也不例外。虽然关于这一主题的资源肯定不缺乏,但实际可行的建议却很少。在我找工作的过程中,我知道超过70%的求职者是通过某种形式的关系网找到工作的。我知道我应该“联系招聘人员,建立我的关系网,以便进入这个领域”。但即使知道了这一点,我仍然面临着一个重要的问题:如何?
我第一次寻找数据科学工作是在2017年2月我即将完成研究生学业的时候。我尽我所能得到面试,包括…
在三个月的全职工作承诺下(即每天至少花8小时)求职后,我终于通过AngelList获得了第一次面试机会。
我第二次发现自己在寻找数据科学工作是在2018年12月,当时的初创公司解雇了我。这一次,我在一个月内获得了10个面试机会,使用了50份申请和18份推荐(总共花了不到30个小时)。这种巨大的差异并不是因为我有工作经验。事实上,我第二次在就业市场上并没有更有竞争力。这种剧烈的变化是因为我第一次就做错了!这并不是因为关于获得数据科学面试的文章误导或不正确,而是它们只告诉我该做什么,而不是如何做。
在这篇文章中,我不仅将分享要做什么(只有3种方法而不是10种),以及如何有效地获得面试。你会在这篇文章中找到策略、脚本和其他免费资源,这将帮助你在求职中有条不紊。具体来说,本博客回答了这些问题:
在我们开始之前,你更喜欢视频吗?观看这段YouTube视频,而不是阅读。
有三种获得面试的方法:原始应用程序、联系网守和获取推荐。原始申请意味着简单地向职位空缺提交你的简历。虽然这是一个简单的方法,但它也有低效率的倾向。联系看门人可能更有效,但需要更多的努力。获得推荐人是最有效的方法,但它也需要最多的时间和精力(假设你还不认识愿意推荐你的人)。下图给出了这三种方法在努力/时间和有效性方面的可视化。
当我们第一次想到求职板来检查我们的求职时,我们通常会立即转向流行的在线求职板,如LinkedIn、GlassDoor或事实上。第一次找工作时,我在LinkedIn上提交了数百份申请,但得到零回复。事实上,我的一些正在进行职业转型的朋友也发现自己在领英上没有得到回复。当我开始第二次找工作时,我没有在LinkedIn上提交一份申请。
为什么?问题是,每个职位在一周内都有数百名申请者申请。如果你仅仅依靠这些受欢迎的求职板,你得到回应的机会很小。你在和堆积如山的候选人竞争!
不幸的是,近几年来,LinkedIn已经成为一个为招聘人员服务的平台,这些招聘人员希望接触到具有确切经验和资历的潜在候选人。它不是一个为缺乏经验的求职者服务的平台,因为你必须与数百(有时数千)的求职者竞争一个职位。
解决这个问题的一个方法是在不太受欢迎的网站上应用。使用尚未成为主流的网站。怀疑?爱德华·哈里斯(Edouard Harris)在他的博客文章中出色地解释了为什么“公司更关注通过不太为人所知的渠道申请的申请人”。这里有一些我和我认识的人尝试过的网站,并被证明是有帮助的。有些甚至是专门与数据科学相关的。
此外,还有一些较小的在线招聘板比三个最大的回应率更高。
无论何时在任何职务公告板上申请,请尝试向正在雇用的人发送个性化通知。调查公司(使用公司网站、谷歌和Glassdoor)并解释为什么你会是该职位的最佳人选。个性化将大大增加你得到回应的机会。
尽管我推荐的网站的回复率往往比大的求职板高,但招聘人员仍然需要几周时间才能做出回应,因为他们总是有一堆简历需要审查。现在您想尝试第二种方法--直接联系网关守卫。使用这种方法,我能够比原始应用程序更快地获得响应。
把关人是指您感兴趣的公司中的技术招聘人员或数据科学家。大公司通常有专门招聘数据科学家的技术招聘人员,但小公司的数据团队可能更独立。如果你能赢得守门人的支持,它可以让你在招聘过程中继续前进。
以下是赢得守门人的几个步骤:
电子邮件演讲应该简洁完整。你的电子邮件可能会被转发给另一个人,没有人会为你复制和粘贴多封电子邮件,所以推销需要有一切。一封好的电子邮件包含两个部分:
为了使事情更简单,这里有一个模板。
如果你在几天内得到回应,太好了!但是,如果您在一周左右的时间内没有收到它,请发送后续电子邮件给守门人。根据我自己和我朋友的经历,对后续邮件的回应率高于第一封邮件。这是我用于后续邮件的模板:
虽然您当然可以使用这两个模板作为起点,但不要复制它们。如果看门人看到完全相同的电子邮件模板,就会留下负面印象。你可以改变一切。你可以把它变长或变短。只要记住,主要的想法是表明你的兴趣,并发送一切必要的。
第一次找工作时,我联系了校友、有共同朋友的人,甚至随机的人来获得推荐。然而,我最终没有得到任何。相比之下,我第二次找工作时,我的关系网里的人告诉我,他们愿意推荐我,甚至还没等我开口。
随着时间的推移,我学到了一些关于要求转诊的误解。获得推荐是为了让熟悉您的工作的人向他们的公司提供热情的推荐。它是而不是骚扰你在LinkedIn或其他地方发现的陌生人。此外,大多数时候,后一种方法不起作用。
获得推荐与联系守门人的不同之处在于,首先要与在科技公司工作的人建立关系,无论他们的职业是什么。不管他们是产品经理、软件工程师、产品设计师还是其他什么。一段感情有很长的路要走。Haseeb Qureshi在博客上发表了一篇进军科技行业的文章。关于网络的部分尤其精彩。库雷希说…
…人们讨厌当你向他们要求工作时。
给你工作?为什么?他们不认识你。他们为什么要给你工作?他们为什么要在你身上浪费时间?
信息性面试的威力在于,你不是在谈论你,而是在谈论他们。人们喜欢谈论自己。他们喜欢教别人。他们想帮忙。但他们不想被陌生人缠着寻求帮助。
如果你继续这样做,人们会看到你的好奇心和你的真诚。他们会相信你的故事,他们会希望向你推荐。
这听起来像很多工作,尤其是当你以前没有做过的时候,但实际上只有4个步骤来正确地建立一段关系:
正是这些步骤让我在第二次求职中找到了18个推荐人。如果你遵循所有这些步骤,你会得到强大的推荐!这不仅对你第一次找工作有帮助,而且对以后的求职也有帮助。
下面是一个冷电子邮件模板,你可以作为第一次外联的参考。这里的要点是使它个人化,并表明你真正的兴趣。
同样,世界很小。不要复制完全的脚本。花时间定制您的消息,因为从长远来看,这是值得的。
根据你的目标和可用性,你可以选择三种方法中的一种或多种来获得面试。但是不管你使用哪种方法,一份好的简历是关键。这是让招聘人员扭转局面的事情。
简历是你成就的总结。它应该是简短的,所以它不是一个展示你所知道或能做的一切的地方。添加太多的内容只会让人们用不必要的信息不堪重负。因此,在你的数据科学简历中,你希望突出与数据科学相关的最重要的东西,如工作经验、培训和相关技能。当招聘人员或招聘经理看到你的简历时,他们应该立即觉得你在数据科学方面有丰富的经验,你是一个合格的候选人。
下面是我在测试自己的简历,与许多招聘人员和招聘经理交谈,并审阅其他人的简历后创建的一些写简历的规则。
归根结底,获得数据科学面试是很困难的,尤其是对初学者来说。即使你已经努力工作了几个月,但没有得到任何回应,这可能会令人沮丧。希望这篇文章能让任何有抱负的数据科学家在找到工作的过程中变得更加清晰。如果你想要更多的建议,请随时联系我,我很乐意帮忙!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26