京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者安德里亚·劳拉,自由作家
“数据科学家”的工作岗位和个人资料每年都在变化。它的工资也是如此,有趣的是,两者都在不断上涨。
随着数据科学家的平均工资突破12.5万美元大关,职位空缺数量增长650%,尽管总体放缓,但这一职位的需求在整个商业市场中表现出了强劲的势头。
从用户在线活动的各个角落收集到了大量的数据。这些数据需要很好地存储、维护和分析,并需要开发系统,以便很好地管理这些数据。数据科学家基本上是数据和技术专家,他们倾向于做好这项工作。像数据分析师、数据工程师和商业智能分析师这样的职位属于相同的权限。
本职位描述包括:
上述职务说明要求在若干领域具有一系列专门知识。此外,在开始从事数据科学之前,您还需要了解数据主要包括数字。因此,如果你不喜欢与数字打交道,那么成为一名数据科学家对你来说可能不是一个很好的选择。
数据科学家的必备技能包括:
1。首先,您需要了解编程:上面所述的工作描述清楚地表明,数据科学家倾向于开发算法和系统,以筛选大量数据,用于业务开发。只有那些对计算机编程有扎实理解的人才能开发出这样的解决方案。这里的软件专门化包括:
2。对数学的热爱:作为一名数据科学家,你会一次又一次地要求你的高中数学技能,包括概率和统计,以及基本的代数和微积分概念。所以,如果你打算成为一名数据科学家;尽快刷这些技能。
3。数据分析专业:存储和同化大量数据被称为大数据。正如前面的工作描述中所述,数据科学家需要开发模型,以帮助获取和分析获取的数据,从而开发有意义的模型和解决方案。这种大数据应用程序开发需要SQL(顺序查询语言,允许算法使用查询调用和获取特定格式的数据)或Hadoop(一种软件库,最终在计算设备集群中分发大数据,以进行更好的分析)方面的专业知识。Spark可以与Hadoop结合使用来处理大型非结构化数据集。
4。讲故事技巧:仅仅收集和分析数据是不够的。数据科学家需要从数据集中处理出有意义的输出,并以利益相关者可以理解和使用的方式呈现它们。因此,它们需要包括各种讲故事的技术,包括数据可视化,以确保输出得到良好的呈现。各种数据可视化工具如Matplotlib、Ggplot和d3.js等都可以用于此目的。要成为一个能干的数据科学家,你至少应该精通其中的一个。
5。熟练地理解和部署机器学习是必须的:作为一名数据科学家,您必须处理各种格式的大量数据,包括结构化和非结构化格式。机器学习将帮助你开发算法,有效地筛选并利用这些数据进行预测。因此,要成为一个更好的数据科学家,你必须掌握机器学习的概念。
6。对业务的透彻理解:作为一名数据科学家,您倾向于通过用户数据来开发业务问题的解决方案。但是,为了有效地开发这些解决方案,您首先需要对业务需求和您倾向于使用大数据解决方案来解决的问题有一个表单。只有这样,您才能开发并提出一个有效的解决方案。
数据科学是现代最有前途的职业之一。所以,如果你想把自己看成一个数据科学家,试着在某种程度上获得上面提到的技能。有各种在线教程可以帮助您了解python、SQL和其他必要的概念。尝试浏览它们,以便对数据科学世界有一个定义良好的介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09