京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家是当今最受欢迎的专业人士之一。随着数据在现代商业中继续发挥越来越突出的作用,这个行业只会变得更有价值。考虑到这一前景,这是一个理想的时间追求作为一个数据科学家的职业生涯。
成为一名数据科学家可能是一个有回报和有利可图的职业。劳工统计局预计,到2029年,这些工作岗位将增长15%,远快于全国平均水平。数据科学家2019年的平均工资为122,840美元。
你可能不需要更多关于你为什么应该成为一名数据科学家的说服力,但如何做到这一点可能不太明显。以下是开始数据科学职业生涯的一步一步指南。
和大多数职业一样,你需要接受适当的教育才能成为一名数据科学家。理想情况下,你应该获得相关领域的本科学位,如计算机科学、信息系统或数据分析。大多数专业数据科学家也拥有硕士学位,通常在数据科学中的一个更专业的领域。
如果你已经有了一个学位,你不一定需要回到学校去读一个更相关的学位。不过,你应该看看在线课程,在那里你可以学习一些数据科学课程。寻找一些额外的认证和许可证也将证明是有帮助的。
你在课堂上学到的技能并不是成为一名数据科学家所需要的唯一教育。您还应该考虑学习各种编程语言,并寻求实践经验。你可以找到大量的书籍和在线课程来帮助你发展这些技能。
要找到一份数据科学家的工作,你需要的不仅仅是教育。大多数公司也会寻找你技能的切实证据。Mohammad Shokoohi-Yekta是苹果公司的前高级数据科学家,他说你应该对代码和应用数据科学感到舒服,而不是理论上的。
最好的方式,你可以显示你的舒适和知识在这方面是通过一个投资组合,你的工作。尽早开始参与实际操作的数据科学项目,并将它们编译成投资组合。你可以通过自由职业者的数据工作和你感兴趣的领域的宠物项目来做到这一点。
您的投资组合应该以各种不同的数据科学项目为特色,以展示您的多才多艺。您应该演示各种编程语言、行业和项目类型的技能。如果你能参加任何与数据科学相关的比赛,你在这些比赛中的工作将是一个出色的投资组合。
一旦你有了相关的教育和一个相当大的投资组合,是时候开始寻找一个职位了。
虽然多才多艺总是有帮助的,但你可能会有更好的运气,以特定的资格和认证为目标的利基行业。例如,所有国防部承包商都需要符合CMMC的规定,这样你就可以获得这个认证,并更好地获得国防部的工作机会。
记住给每个潜在的雇主量身定制你的简历和求职信。强调你的技能和经验是最相关的特定行业和职位在手头。除了通过Inside这样的网站申请工作之外,还要在LinkedIn上发展你的关系网,努力在网上建立一个值得尊敬的网站,让雇主注意到你。
一开始你可能无法得到一个数据科学家的职位,这也没关系。事实上,最好先申请一个相关但更入门级的职位,比如数据分析。你可以从那里发展你的事业。
在职经验是你推进事业的最佳资源。有鉴于此,试着不要对你接受的第一个职位过于挑剔。如果你得到了一份数据相关领域的稳定工作,但这不是你理想的职位,你可能仍然想接受它。将您的第一份数据工作视为一个启动点。
拥有50到500名员工的公司是你在数据科学领域的第一份工作的理想规模。在这些中型企业中,你可以从资深数据科学家那里学习,并有很多提升的机会。一旦你开始在你的第一个职位上工作,采取主动,尝试在尽可能多的项目上工作,而不是让自己变得单薄。
你在公司里寻找的新机会越多,你获得的相关经验就越多。当你工作的时候,在你目前的业务和其他公司寻找晋升的机会。如果你表现出主动性和非凡的职业道德,你很快就会成为一名数据科学家。
在数据科学领域开始职业生涯永远不会太晚。但如果你知道这是你想做的,就不要拖延。你可以从今天开始获得你需要的技能和经验。成为一名数据科学家并不容易,但是如果您遵循这些步骤,您可以在数据科学领域享受漫长而有回报的职业生涯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27