
数据科学家是当今最受欢迎的专业人士之一。随着数据在现代商业中继续发挥越来越突出的作用,这个行业只会变得更有价值。考虑到这一前景,这是一个理想的时间追求作为一个数据科学家的职业生涯。
成为一名数据科学家可能是一个有回报和有利可图的职业。劳工统计局预计,到2029年,这些工作岗位将增长15%,远快于全国平均水平。数据科学家2019年的平均工资为122,840美元。
你可能不需要更多关于你为什么应该成为一名数据科学家的说服力,但如何做到这一点可能不太明显。以下是开始数据科学职业生涯的一步一步指南。
和大多数职业一样,你需要接受适当的教育才能成为一名数据科学家。理想情况下,你应该获得相关领域的本科学位,如计算机科学、信息系统或数据分析。大多数专业数据科学家也拥有硕士学位,通常在数据科学中的一个更专业的领域。
如果你已经有了一个学位,你不一定需要回到学校去读一个更相关的学位。不过,你应该看看在线课程,在那里你可以学习一些数据科学课程。寻找一些额外的认证和许可证也将证明是有帮助的。
你在课堂上学到的技能并不是成为一名数据科学家所需要的唯一教育。您还应该考虑学习各种编程语言,并寻求实践经验。你可以找到大量的书籍和在线课程来帮助你发展这些技能。
要找到一份数据科学家的工作,你需要的不仅仅是教育。大多数公司也会寻找你技能的切实证据。Mohammad Shokoohi-Yekta是苹果公司的前高级数据科学家,他说你应该对代码和应用数据科学感到舒服,而不是理论上的。
最好的方式,你可以显示你的舒适和知识在这方面是通过一个投资组合,你的工作。尽早开始参与实际操作的数据科学项目,并将它们编译成投资组合。你可以通过自由职业者的数据工作和你感兴趣的领域的宠物项目来做到这一点。
您的投资组合应该以各种不同的数据科学项目为特色,以展示您的多才多艺。您应该演示各种编程语言、行业和项目类型的技能。如果你能参加任何与数据科学相关的比赛,你在这些比赛中的工作将是一个出色的投资组合。
一旦你有了相关的教育和一个相当大的投资组合,是时候开始寻找一个职位了。
虽然多才多艺总是有帮助的,但你可能会有更好的运气,以特定的资格和认证为目标的利基行业。例如,所有国防部承包商都需要符合CMMC的规定,这样你就可以获得这个认证,并更好地获得国防部的工作机会。
记住给每个潜在的雇主量身定制你的简历和求职信。强调你的技能和经验是最相关的特定行业和职位在手头。除了通过Inside这样的网站申请工作之外,还要在LinkedIn上发展你的关系网,努力在网上建立一个值得尊敬的网站,让雇主注意到你。
一开始你可能无法得到一个数据科学家的职位,这也没关系。事实上,最好先申请一个相关但更入门级的职位,比如数据分析。你可以从那里发展你的事业。
在职经验是你推进事业的最佳资源。有鉴于此,试着不要对你接受的第一个职位过于挑剔。如果你得到了一份数据相关领域的稳定工作,但这不是你理想的职位,你可能仍然想接受它。将您的第一份数据工作视为一个启动点。
拥有50到500名员工的公司是你在数据科学领域的第一份工作的理想规模。在这些中型企业中,你可以从资深数据科学家那里学习,并有很多提升的机会。一旦你开始在你的第一个职位上工作,采取主动,尝试在尽可能多的项目上工作,而不是让自己变得单薄。
你在公司里寻找的新机会越多,你获得的相关经验就越多。当你工作的时候,在你目前的业务和其他公司寻找晋升的机会。如果你表现出主动性和非凡的职业道德,你很快就会成为一名数据科学家。
在数据科学领域开始职业生涯永远不会太晚。但如果你知道这是你想做的,就不要拖延。你可以从今天开始获得你需要的技能和经验。成为一名数据科学家并不容易,但是如果您遵循这些步骤,您可以在数据科学领域享受漫长而有回报的职业生涯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09