
作者Yulia Lukashina,技术作家。
我完全相信每个人都能做好(赚到好钱!)只有在他们喜欢做的工作中。如果你对你的任务感到无聊,每天都不得不强迫自己,你就不能交付高质量的结果。
但如果数据科学让你感到温暖和轻盈,那么你就选对了打开的大门。你到底是怎么知道的?
或者你的仪表板,你的管道,或者你正在建造的任何东西。你感觉像一个工匠看着他的创作,享受着它的完美。
您对添加的每一行代码都感到更高兴,使您更接近结果。你喜欢打字。您喜欢毫不费力地从记忆中回忆函数,并将它们融入您以前概述的处理逻辑中。
你喜欢学习新的函数和扩大你的“词汇量”。你觉得自己就像一个外语课程的学生,开始理解以前是个谜的单词。
长代码并不总是质量的标志。但你也喜欢优化!您喜欢用刚刚学习的包中的现有函数替换笨拙的自发明函数。
或者您甚至向GitHub提交一个新包,让更多的人使用它!
您喜欢优雅的代码行的外观,它取代了复杂且不可伸缩的解决方案。你喜欢回到你写过的东西,让它变得更好。
嗯,如果您有一个最后期限要掌握,错误消息可能会非常令人沮丧。但好奇心总是好兆头!
你认为,
哇,我的宝贝和我说话!
并咨询搜索引擎的含义。然后您学习工具或编程语言的一个新的方面。你很高兴消费新知识,获得一个达到智慧新水平的机会。
是的,错误信息让我们继续前进!
即使它们一点也不比旧的好。即使它们乱七八糟,违反直觉,您仍然喜欢学习新的数据科学工具。只是因为它让你觉得自己像一个在沙盒里的孩子,建造一个没有人会住的沙堡。
您喜欢深入到新工具并抓住其背后的逻辑。你喜欢逆向工程,你不认为这是浪费你的时间。
每一个新的工具都为你打开了新的思维方式,打开了新问题的新视角,打开了旧分析方法的新角度。
而且它也可能为你的数据科学简历增加价值!
你可能是一个害羞的人,避免公开演讲或在大量观众面前做报告。但你不会克制地回答你最好的朋友关于你工作的问题。你在半意识的层面上为自己的专业领域感到自豪。
你谈论它不是因为你喜欢说话和给人留下深刻印象,而是因为你的职业是你身份的一部分。你可以做你自己,分享你认为重要的东西。
你喜欢在他们的脸上看到理解,理解一件复杂的事情的喜悦,这件事情曾经是激动人心的魔法。你喜欢指导你的学生或同事通过设置,回答他们的问题,消除他们对自己能力的怀疑。
你喜欢培养新一代的数据科学家,或者至少是超级用户。你会感觉到越来越多的人加入了你的秘密数据科学“集团”。
你得到的是原始数据,它没有显示出任何系统化的迹象。那会让你发疯的!
然后,一步一步地,你做一些数据清理,转换它,然后--瞧!-您可以看到清晰的维度、模式和可能的依赖关系。这就像是从飞机的窗户上看飞机起飞时。你当时站在机场大楼附近,但后来你逐渐变得越来越高,突然间你立刻看到了整个城市!
…包括你每周去附近的杂货店。你有一个清单,你有一个计划,哪些货架过去,按什么顺序。不是说你的时间太少,但优化购物路线似乎只是一件很自然的事情!
好吧,这可能是一种夸张。我的观点是,如果你热爱数据科学,你可以在空闲时间继续做。
当我在两个让我感到快乐的领域--数据科学和技术写作--定居后,我的职业生涯开始更加有机地发展。我不再为下一个漂亮的头衔而战。我吸收了新知识,却不考虑眼前的回报。这种态度开始得到回报,尽管确实需要一点耐心。
当你以良好的感觉结束一天时,第二天早上你会更有效率。当你散发出冷静和自信时,你就可以不再担心工作竞争。公司会因为你是一个理性和安全的人而雇佣你:除了是一个高效的数据科学家!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10