
作者安德里亚·劳拉,自由作家
“数据科学家”的工作岗位和个人资料每年都在变化。它的工资也是如此,有趣的是,两者都在不断上涨。
随着数据科学家的平均工资突破12.5万美元大关,职位空缺数量增长650%,尽管总体放缓,但这一职位的需求在整个商业市场中表现出了强劲的势头。
从用户在线活动的各个角落收集到了大量的数据。这些数据需要很好地存储、维护和分析,并需要开发系统,以便很好地管理这些数据。数据科学家基本上是数据和技术专家,他们倾向于做好这项工作。像数据分析师、数据工程师和商业智能分析师这样的职位属于相同的权限。
本职位描述包括:
上述职务说明要求在若干领域具有一系列专门知识。此外,在开始从事数据科学之前,您还需要了解数据主要包括数字。因此,如果你不喜欢与数字打交道,那么成为一名数据科学家对你来说可能不是一个很好的选择。
数据科学家的必备技能包括:
1。首先,您需要了解编程:上面所述的工作描述清楚地表明,数据科学家倾向于开发算法和系统,以筛选大量数据,用于业务开发。只有那些对计算机编程有扎实理解的人才能开发出这样的解决方案。这里的软件专门化包括:
2。对数学的热爱:作为一名数据科学家,你会一次又一次地要求你的高中数学技能,包括概率和统计,以及基本的代数和微积分概念。所以,如果你打算成为一名数据科学家;尽快刷这些技能。
3。数据分析专业:存储和同化大量数据被称为大数据。正如前面的工作描述中所述,数据科学家需要开发模型,以帮助获取和分析获取的数据,从而开发有意义的模型和解决方案。这种大数据应用程序开发需要SQL(顺序查询语言,允许算法使用查询调用和获取特定格式的数据)或Hadoop(一种软件库,最终在计算设备集群中分发大数据,以进行更好的分析)方面的专业知识。Spark可以与Hadoop结合使用来处理大型非结构化数据集。
4。讲故事技巧:仅仅收集和分析数据是不够的。数据科学家需要从数据集中处理出有意义的输出,并以利益相关者可以理解和使用的方式呈现它们。因此,它们需要包括各种讲故事的技术,包括数据可视化,以确保输出得到良好的呈现。各种数据可视化工具如Matplotlib、Ggplot和d3.js等都可以用于此目的。要成为一个能干的数据科学家,你至少应该精通其中的一个。
5。熟练地理解和部署机器学习是必须的:作为一名数据科学家,您必须处理各种格式的大量数据,包括结构化和非结构化格式。机器学习将帮助你开发算法,有效地筛选并利用这些数据进行预测。因此,要成为一个更好的数据科学家,你必须掌握机器学习的概念。
6。对业务的透彻理解:作为一名数据科学家,您倾向于通过用户数据来开发业务问题的解决方案。但是,为了有效地开发这些解决方案,您首先需要对业务需求和您倾向于使用大数据解决方案来解决的问题有一个表单。只有这样,您才能开发并提出一个有效的解决方案。
数据科学是现代最有前途的职业之一。所以,如果你想把自己看成一个数据科学家,试着在某种程度上获得上面提到的技能。有各种在线教程可以帮助您了解python、SQL和其他必要的概念。尝试浏览它们,以便对数据科学世界有一个定义良好的介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09