
数据科学是一个不断扩展的领域。更多的行业继续依赖技术来收集和处理重要的信息,数据科学家的需求很高。然而,找到一份适合你需要的工作有时是一个挑战。在这些情况下,你可以转向自由职业。
自由职业者正迅速成为各种专业人士的热门选择。事实上,LinkedIn正在推出一项新功能,专门帮助自由职业者找到工作。随着这种增长,现在是进入数据科学自由职业的最佳时机。以下步骤将帮助您开始寻找客户机,或者帮助您改进当前的策略。
这个过程的第一步是建立和策划一个强大的在线存在。你需要一个网站,工作列表和LinkedIn页面。
利用你的网站来炫耀你的技能。用你最好的脚印推销你自己。把你的相关工作经验组合起来,并在你成功帮助更多客户时更新它。记住,一个网站必须易于导航,否则人们会点击离开。使联系你和获得他们需要的信息变得容易。
在谷歌上,你可以打开一个谷歌我的商业列表,并连接你的网站和详细信息。这样,一个快速搜索数据科学自由职业者将提出您的业务。考虑你想保持开放的时间,以及潜在客户应该如何联系你。
然后,更新你的LinkedIn并使用新的Marketplaces功能来宣传自己是一名自由职业者。这最后一个行为将帮助您涵盖所有的基础,以吸引企业或个人寻找数据科学家。
数据科学因时而变。新技能开始发挥作用,你必须跟上工作的要求。幸运的是,数据科学是一个广泛的职业--你可以将你为网络安全学到的技能应用到机器学习算法中。
你也可以求助于在线课程来获得你还没有的技能。Lynda有很多选择,可以帮助您开发新技能,如区块链技术中的数据管理。您可以将证书添加到您的网站,以提高您的吸引力和资格,任何数据科学相关的工作。
作为一名自由数据科学家,你应该知道工作的基础知识,统计学,编程,数据可视化,机器和深度学习,以及软件工程。您还需要对大数据有很好的理解。这些技能给了你一个全面的方法来完成所有的自由职业工作。
对数据科学专业人员的大量需求是这份工作的另一个好处。你会发现技术工作是跨行业的必需品,不管他们的重点是什么。例如,旅游和银行业需要数据科学家保护和监控敏感信息。
在银行部门,采用基于数据的方法为客户和机构本身提供了必要的透明度。随着新的金融机构为客户提供更多的金融代理选择--比如加密银行--银行需要确保所有这些控制都有适当的数据保护。这让这个行业在更多的信任中前进。
这一想法适用于所有部门,因为每个机构都需要收集和保护数据。关键是保持你的选择开放。寻找每一个机会,并记住你可以与已建立的企业、初创企业和个人客户合作。
虽然你可以使用互联网来获得认证,但你可以更进一步。其他资源帮助你建立网络和建立你作为自由职业者所需的联系。你应该从这里开始:
从这四个资源开始。您将立即与其他人联系,并对该领域有更好的了解。
一旦你建立了工作联系,你需要解决一些最后的细节。当你与公司或个人合作时,考虑你的工作时间、合同义务和薪酬。
虽然工作时间和任务将由你根据自己的需要来决定,但计算工资可能会稍微复杂一点。与其他自由职业者核实,看看他们的收费,并根据项目和你的技能和经验改变这些数字。
根据Glassdoor的数据,数据科学家的平均年收入约为11.3万美元。如果你把它除以每小时的价格,它会是每小时54美元多一点。但是,如果你有像掌握Scala和Spark这样的技能,你可以增加你的费用。这取决于你的背景。记住,不要低估自己--要知道自己的价值。
通过这五个步骤,您可以开始您的职业生涯作为一个成功的自由数据科学家。每个人的道路看起来都不同,但你应该从建立自己开始。然后,有了一个强大的基础,你就可以接受任何机会来你的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21