京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学是一个不断扩展的领域。更多的行业继续依赖技术来收集和处理重要的信息,数据科学家的需求很高。然而,找到一份适合你需要的工作有时是一个挑战。在这些情况下,你可以转向自由职业。
自由职业者正迅速成为各种专业人士的热门选择。事实上,LinkedIn正在推出一项新功能,专门帮助自由职业者找到工作。随着这种增长,现在是进入数据科学自由职业的最佳时机。以下步骤将帮助您开始寻找客户机,或者帮助您改进当前的策略。
这个过程的第一步是建立和策划一个强大的在线存在。你需要一个网站,工作列表和LinkedIn页面。
利用你的网站来炫耀你的技能。用你最好的脚印推销你自己。把你的相关工作经验组合起来,并在你成功帮助更多客户时更新它。记住,一个网站必须易于导航,否则人们会点击离开。使联系你和获得他们需要的信息变得容易。
在谷歌上,你可以打开一个谷歌我的商业列表,并连接你的网站和详细信息。这样,一个快速搜索数据科学自由职业者将提出您的业务。考虑你想保持开放的时间,以及潜在客户应该如何联系你。
然后,更新你的LinkedIn并使用新的Marketplaces功能来宣传自己是一名自由职业者。这最后一个行为将帮助您涵盖所有的基础,以吸引企业或个人寻找数据科学家。
数据科学因时而变。新技能开始发挥作用,你必须跟上工作的要求。幸运的是,数据科学是一个广泛的职业--你可以将你为网络安全学到的技能应用到机器学习算法中。
你也可以求助于在线课程来获得你还没有的技能。Lynda有很多选择,可以帮助您开发新技能,如区块链技术中的数据管理。您可以将证书添加到您的网站,以提高您的吸引力和资格,任何数据科学相关的工作。
作为一名自由数据科学家,你应该知道工作的基础知识,统计学,编程,数据可视化,机器和深度学习,以及软件工程。您还需要对大数据有很好的理解。这些技能给了你一个全面的方法来完成所有的自由职业工作。
对数据科学专业人员的大量需求是这份工作的另一个好处。你会发现技术工作是跨行业的必需品,不管他们的重点是什么。例如,旅游和银行业需要数据科学家保护和监控敏感信息。
在银行部门,采用基于数据的方法为客户和机构本身提供了必要的透明度。随着新的金融机构为客户提供更多的金融代理选择--比如加密银行--银行需要确保所有这些控制都有适当的数据保护。这让这个行业在更多的信任中前进。
这一想法适用于所有部门,因为每个机构都需要收集和保护数据。关键是保持你的选择开放。寻找每一个机会,并记住你可以与已建立的企业、初创企业和个人客户合作。
虽然你可以使用互联网来获得认证,但你可以更进一步。其他资源帮助你建立网络和建立你作为自由职业者所需的联系。你应该从这里开始:
从这四个资源开始。您将立即与其他人联系,并对该领域有更好的了解。
一旦你建立了工作联系,你需要解决一些最后的细节。当你与公司或个人合作时,考虑你的工作时间、合同义务和薪酬。
虽然工作时间和任务将由你根据自己的需要来决定,但计算工资可能会稍微复杂一点。与其他自由职业者核实,看看他们的收费,并根据项目和你的技能和经验改变这些数字。
根据Glassdoor的数据,数据科学家的平均年收入约为11.3万美元。如果你把它除以每小时的价格,它会是每小时54美元多一点。但是,如果你有像掌握Scala和Spark这样的技能,你可以增加你的费用。这取决于你的背景。记住,不要低估自己--要知道自己的价值。
通过这五个步骤,您可以开始您的职业生涯作为一个成功的自由数据科学家。每个人的道路看起来都不同,但你应该从建立自己开始。然后,有了一个强大的基础,你就可以接受任何机会来你的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27