京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学是一个不断扩展的领域。更多的行业继续依赖技术来收集和处理重要的信息,数据科学家的需求很高。然而,找到一份适合你需要的工作有时是一个挑战。在这些情况下,你可以转向自由职业。
自由职业者正迅速成为各种专业人士的热门选择。事实上,LinkedIn正在推出一项新功能,专门帮助自由职业者找到工作。随着这种增长,现在是进入数据科学自由职业的最佳时机。以下步骤将帮助您开始寻找客户机,或者帮助您改进当前的策略。
这个过程的第一步是建立和策划一个强大的在线存在。你需要一个网站,工作列表和LinkedIn页面。
利用你的网站来炫耀你的技能。用你最好的脚印推销你自己。把你的相关工作经验组合起来,并在你成功帮助更多客户时更新它。记住,一个网站必须易于导航,否则人们会点击离开。使联系你和获得他们需要的信息变得容易。
在谷歌上,你可以打开一个谷歌我的商业列表,并连接你的网站和详细信息。这样,一个快速搜索数据科学自由职业者将提出您的业务。考虑你想保持开放的时间,以及潜在客户应该如何联系你。
然后,更新你的LinkedIn并使用新的Marketplaces功能来宣传自己是一名自由职业者。这最后一个行为将帮助您涵盖所有的基础,以吸引企业或个人寻找数据科学家。
数据科学因时而变。新技能开始发挥作用,你必须跟上工作的要求。幸运的是,数据科学是一个广泛的职业--你可以将你为网络安全学到的技能应用到机器学习算法中。
你也可以求助于在线课程来获得你还没有的技能。Lynda有很多选择,可以帮助您开发新技能,如区块链技术中的数据管理。您可以将证书添加到您的网站,以提高您的吸引力和资格,任何数据科学相关的工作。
作为一名自由数据科学家,你应该知道工作的基础知识,统计学,编程,数据可视化,机器和深度学习,以及软件工程。您还需要对大数据有很好的理解。这些技能给了你一个全面的方法来完成所有的自由职业工作。
对数据科学专业人员的大量需求是这份工作的另一个好处。你会发现技术工作是跨行业的必需品,不管他们的重点是什么。例如,旅游和银行业需要数据科学家保护和监控敏感信息。
在银行部门,采用基于数据的方法为客户和机构本身提供了必要的透明度。随着新的金融机构为客户提供更多的金融代理选择--比如加密银行--银行需要确保所有这些控制都有适当的数据保护。这让这个行业在更多的信任中前进。
这一想法适用于所有部门,因为每个机构都需要收集和保护数据。关键是保持你的选择开放。寻找每一个机会,并记住你可以与已建立的企业、初创企业和个人客户合作。
虽然你可以使用互联网来获得认证,但你可以更进一步。其他资源帮助你建立网络和建立你作为自由职业者所需的联系。你应该从这里开始:
从这四个资源开始。您将立即与其他人联系,并对该领域有更好的了解。
一旦你建立了工作联系,你需要解决一些最后的细节。当你与公司或个人合作时,考虑你的工作时间、合同义务和薪酬。
虽然工作时间和任务将由你根据自己的需要来决定,但计算工资可能会稍微复杂一点。与其他自由职业者核实,看看他们的收费,并根据项目和你的技能和经验改变这些数字。
根据Glassdoor的数据,数据科学家的平均年收入约为11.3万美元。如果你把它除以每小时的价格,它会是每小时54美元多一点。但是,如果你有像掌握Scala和Spark这样的技能,你可以增加你的费用。这取决于你的背景。记住,不要低估自己--要知道自己的价值。
通过这五个步骤,您可以开始您的职业生涯作为一个成功的自由数据科学家。每个人的道路看起来都不同,但你应该从建立自己开始。然后,有了一个强大的基础,你就可以接受任何机会来你的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16