京公网安备 11010802034615号
经营许可证编号:京B2-20210330
注意:这是本文的第一部分。您可以在这里阅读第二部分。
A/B测试,又称受控实验,在工业上被广泛应用于产品上市决策。它允许科技公司用一个用户子集来评估一个产品/特性,从而推断该产品可能如何被所有用户接收。数据科学家处于a/B测试过程的前沿,a/B测试被认为是数据科学家的核心能力之一。数据科学采访反映了这一现实。面试官通常会向应聘者提出a/B测试问题以及商业案例问题(也就是指标问题,产品感觉问题),以评估应聘者的产品知识和推动a/B测试过程的能力。
在本文中,我们将采用面试驱动的方法,将一些最常见的面试问题与A/B测试的不同组成部分联系起来,包括选择测试思路、设计A/B测试、评估测试结果以及做出是否进行测试的决定。具体来说,我们将讨论7最常见的面试问题和答案。
在你开始阅读之前,如果你是一个视频人,请随意查看这个YouTube视频,以获得这篇文章的缩略版本。
a/B测试是一个强大的工具,但并不是每个想法都是通过运行测试来选择的。有些想法的测试成本可能很高,处于早期阶段的公司可能有资源限制,因此对每个想法都运行测试是不现实的。因此,我们首先要选择哪些想法值得测试,特别是当人们对改进一个产品有不同的意见和想法时,有许多想法可以选择。例如,UX设计师可能建议更改一些UI元素,产品经理可能建议简化结帐流程,工程师可能建议优化后端算法,等等。在这种情况下,涉众依赖数据科学家来推动基于数据的决策。一个面试样本问题是:
在电子商务网站上,有几个想法可以增加转化率,比如允许多项商品结账(目前用户可以同时结账一项商品),允许非注册用户结账,改变“购买”按钮的大小和颜色,等等,你如何选择投资哪个想法?
评估不同想法价值的一种方法是使用历史数据进行定量分析以获得每个想法的机会大小。例如,在投资于电子商务网站的多项商品结账之前,通过分析每个用户购买的多项商品的数量来获得影响的上限大小。如果只有很小比例的用户购买了一个以上的商品,那么开发这个功能可能就不值得了。更重要的是调查用户的购买行为,以了解用户为什么不同时购买多个商品。是因为选择的项目太少了吗?是不是物品太贵了,他们只能买得起一个?是不是结账过程太复杂了,他们不想再经历一次?
这种分析提供了关于哪个idea是a/B测试的好候选者的方向性见解。然而,历史数据只告诉我们过去是如何做的。它无法准确预测未来。
为了获得对每个想法的全面评价,我们可以通过焦点小组和调查进行定性分析。从焦点小组收集的反馈(与用户或有洞察力的用户进行有指导的讨论)或调查中的问题提供了对用户痛点和偏好的更多见解。定性和定性分析相结合可以帮助进一步的想法选择过程。
一旦我们选择一个想法来测试,我们需要决定我们想要运行一个测试的时间,以及如何选择随机化单元。在这一节中,我们将逐一讨论这些问题。
要决定一个测试的持续时间,我们需要获得一个测试的样本大小,这需要三个参数。这些参数是:
经验法则是,样本量n大约等于16(基于α=0.05和β=0.8)乘以样本方差除以δ平方,而δ是治疗与对照的差值:
如果您有兴趣了解我们如何提出经验法则公式,请查看此视频,以获得一步一步的演练。
在面试过程中,你不需要解释你是如何得出这个公式的,但你需要解释我们如何获得每个参数,以及每个参数如何影响样本量。例如,如果样本方差较大,我们需要更多的样本,如果增量较大,我们需要更少的样本。
样本方差可以从现有数据中得到,但我们如何估计δ,即治疗与对照之间的差异?
实际上,我们在进行实验之前并不知道这一点,这就是我们使用最后一个参数的地方:最小可检测效应。在实践中,这是最小的差异。例如,我们可以考虑将收入增加0.1%作为可检测到的最小效应。在现实中,这个价值是由多个利益相关者讨论和决定的。
一旦我们知道了样本量,我们就可以通过样本量除以每组的用户数来获得运行实验的天数。如果这个数字少于一周,我们应该运行实验至少七天,以捕捉每周的模式。通常建议运行两周。当涉及到为测试收集数据时,多总是比不够好。
通常,我们通过随机选择用户并将每个用户分配到控制组或治疗组来划分控制组和治疗组。我们希望每个用户都是独立的,控制组和治疗组之间没有干扰。然而,有时这种独立性假设并不成立。当测试社交网络,如Facebook、Linkedin和Twitter,或双边市场,如Uber、Lyft和爱彼迎时,可能会发生这种情况。一个面试样本问题是:
X公司测试了一个新功能,目标是增加每个用户创建的帖子数量。他们将每个用户随机分配到控制组或治疗组。该测试在帖子数量方面以1%的优势获胜。在新特性向所有用户推出后,您预计会发生什么?会不会和1%一样,如果不是,会多还是少?(假设没有新奇效应)
答案是,我们将看到一个大于1%的值。原因如下。
在社交网络中(例如Facebook、Linkedin和Twitter),用户的行为很可能受到其社交圈中人的行为的影响。如果用户网络中的人(如朋友和家人)使用某个功能或产品,则用户倾向于使用该功能或产品。这称为网络效应。因此,如果我们以“使用者”作为随机单位,并且治疗对使用者有影响,这种影响可能会溢出到对照组,即对照组的行为受到治疗组的影响。在这种情况下,对照组和治疗组之间的差异低估了治疗效果的真正好处。对于面试问题,会超过1%。
对于双边市场(如Uber、Lyft、ebay和爱彼迎):控制组和治疗组之间的干扰也会导致对治疗效果的偏颇估计。这主要是因为控制组和治疗组之间共享资源,这意味着控制组和治疗组将争夺相同的资源。例如,如果我们有一个新产品在治疗组中吸引了更多的驱动程序,那么在对照组中可用的驱动程序就会更少。因此,我们无法准确估计治疗效果。与社会网络不同,在社会网络中,治疗效果低估了新产品的实际利益,在双边市场中,治疗效果高估了的实际效果。
既然我们知道了为什么控制和治疗之间的干扰会导致发射后的效果表现不同于治疗效果,这就引出了下一个问题:我们如何设计测试来防止控制和治疗之间的溢出?一个示例面试问题是:
我们正在推出一个新功能,为我们的骑手提供优惠券。目标是通过降低每次乘坐的价格来增加乘坐的次数。概述一个测试策略来评估新特性的效果。
有许多方法可以解决组之间的溢出,主要目标是隔离控制组和处理组中的用户。下面是几种常用的解决方案,每种方案适用于不同的场景,并且都有局限性。在实际应用中,我们要选择在一定条件下效果最好的方法,也可以将多种方法结合起来,得到可靠的结果。
社交网络:
双边市场:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22