
CDA&中国工商银行股份有限公司数据挖掘内训圆满成功
2017年9月18-20日,CDA数据分析研究院在中国工商银行股份有限公司数据中心(上海)进行了一场以“Python语言数据挖掘应用”为主题的内训。培训班在嘉定园区开课,西三旗园区、外高桥园区和上海分行信息科技部远程视频参加,中心各部门员工报名积极,共有95名员工参加了集中培训。老师和数据分析部门的相关同事进行积极地交流学习,最后都收获了不少学习成果。
内训企业介绍
中国工商银行股份有限公司数据中心(上海)
中国工商银行股份有限公司数据中心(上海)[以下简称数据中心(上海)]为总行直属机构,于2000年11月10日正式挂牌成立。数据中心(上海)承担全行信息系统生产运行及灾备管理的职能,建立了全球领先的核心生产环境,形成了基于ITIL理念的生产运维体系,为工商银行境内外机构提供数据服务,并与500多家第三方机构相连接。
满足更高标准的业务连续性运作和系统可用性要求,工商银行在国内同业率先启动“两地三中心”工程建设。数据中心(上海)在上海外高桥、嘉定,以及北京西三旗三个园区建成两个并行运行、快速接管的同城数据中心和一个异地灾备中心,实现了最高等级的灾备部署,保证信息系统全年365天,全天24小时不间断运行。
十多年的奋勇开拓,不仅铸造了数据中心(上海)强大稳定的信息系统,更锤炼出一支锐意进取、追求卓越的人才团队。我们汇聚人才,更执于培养人才。我们引领改变,更擅于掌控改变。我们开拓视野,更乐于分享视野。我们追寻梦想,更敢于触动梦想。
内训内容简介
整场内训气氛和谐,参加内训的学员都表示收获颇多。
第一阶段:Python 基础学习
1. 语法初步
2. 列表、字符串和元组
3. 集合与字典
4. 条件和循环语句
5. 若干重要内置函数应用
6. 文件操作
7. 函数及其应用
8. 正则表达式
9. 数据库和 Python
10. 排序算法、 动态规划算法、递归算法等算法
1. 整理数据(切片、产生随机数、复制、广播、排序等)
2. 数据索引和选择的各种方法
3. 数据的分组、分割、合并、变形
5. 时间序列数据处理、建模和预测(ARIMA)
6. 含中文数据的处理
7. 数据去重、去离群值
8. R语言和Python(pandas)数据整理和建模的比较
9. 描述统计和推论统计分析
1.Logistic 回归模型对文本的分类
2.图片结构和分析(图片的K-means聚类分析)
3.图片的识别和分类:PCA建模
4.二维手写数字识别(KNN方法)
6.数据可视化的各种情形
7.新闻的文本分类(TF-IDF准则、旅游新闻个性化推荐)
8.手写识别
9.朴素贝叶斯(Naïve Bayes)决策
10.酒的品质分类预测
11.机器学习的格点搜索和参数寻优
12.惩罚线性回归分类器
13.使用支持向量机识别和分类
14.金融时间序列预测(非ARIMA方法)
15.机器集成学习算法
16.随机模拟、用户流失预警、量化投资实战
学员评价
老师通过数据分析工作中遇到的典型数据分析和挖掘案例进行深刻地分析,即使是初学者也能快速掌握Python 数据分析和数据挖掘(含机器学习)的思想和方法,形成科学有效的知识和能力结构体系框架。
企业领导评价
本次培训内容丰富,基本涵盖机器学习常用算法和方法。通过集中培训和学习,学员们纷纷表示受益匪浅,对机器学习有了更深入了解,并且提升了动手实践能力。后续在数据分析实践中,结合我行业务和运维场景需要,使用所学的只是和方法更好的解决问题。同时希望后期与CDA数据分析师在专题类课程多交流,CDA认证、项目咨询等多方面达成更深入合作。
内训咨询
手机/微信:13121318867
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22