
数据挖掘- 分类算法比较
随着计算能力、存储、网络的高速发展,人类积累的数据量正以指数速度增长。对于这些数据,人们迫切希望从中提取出隐藏其中的有用信息,更需要发现更深层次的规律,对决策,商务应用提供更有效的支持。为了满足这种需求,数据挖掘技术的得到了长足的发展,而分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。本文主要侧重数据挖掘中分类算法的效果的对比,通过简单的实验(采用开源的数据挖掘工具 -Weka)来验证不同的分类算法的效果,帮助数据挖掘新手认识不同的分类算法的特点,并且掌握开源数据挖掘工具的使用。
分类算法是解决分类问题的方法,是数据挖掘、机器学习和模式识别中一个重要的研究领域。分类算法通过对已知类别训练集的分析,从中发现分类规则,以此预测新数据的类别。分类算法的应用非常广泛,银行中风险评估、客户类别分类、文本检索和搜索引擎分类、安全领域中的入侵检测以及软件项目中的应用等等。
以下介绍典型的分类算法。
贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。目前研究较多的贝叶斯分类器主要有四种,分别是:Naive Bayes、 TAN、BAN 和 GBN。
贝叶斯网络(BayesNet)
贝叶斯网络是一个带有概率注释的有向无环图,图中的每一个结点均表示一个随机变量 , 图中两结点间若存在着一条弧,则表示这两结点相对应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的。网络中任意一个结点 X 均有一个相应的条件概率表 Conditional Probability Table,CPT) ,用以表示结点 X 在其父结点取各可能值时的条件概率。若结点 X 无父结点 , 则 X 的 CPT 为其先验概率分布。贝叶斯网络的结构及各结点的 CPT 定义了网络中各变量的概率分布。应用贝叶斯网络分类器进行分类主要分成两阶段。第一阶段是贝叶斯网络分类器的学习,即从样本数据中构造分类器,包括结构学习和 CPT 学习;第二阶段是贝叶斯网络分类器的推理,即计算类结点的条件概率,对分类数据进行分类。这两个阶段的时间复杂性均取决于特征值间的依赖程度,甚至可以是 NP 完全问题,因而在实际应用中,往往需要对贝叶斯网络分类器进行简化。根据对特征值间不同关联程度的假设,可以得出各种贝叶斯分类器。
朴素贝叶斯(NaiveBayes)
朴素贝叶斯模型(NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC 模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。NBC 模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给 NBC 模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC 模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC 模型的性能最为良好。
相对其它的 Inductive Learning 的算法来说,Lazy Learning 的方法在训练是仅仅是保存样本集的信息,直到测试样本到达时才进行分类决策。也就是说这个决策模型是在测试样本到来以后才生成的。相对与其它的分类算法来说,这类的分类算法可以根据每个测试样本的样本信息来学习模型,这样的学习模型可能更好的拟 合局部的样本特性。kNN 算法的思路非常简单直观:如果一个样本在特征空间中的 k 个最相似 ( 即特征空间中最邻近 ) 的样本中的大多数属于某一个类别,则该样本也属于这个类别。其基本原理是在测试样本到达的时候寻找到测试样本的 k 临近的样本,然后选择这些邻居样本的类别最集中的一种作为测试样本的类别。在 weka 中关于 kNN 的算法有两个,分别是 IB1,IBk。
IB1 即 1 近邻
IB1 是通过它的一个邻居来判断测试样本的类别
IBk 即 K 近邻
IBk 是通过它周围的 k 个邻居来判断测试样本的类别
在样本中有比较多的噪音点是(noisy points)时,通过一个邻居的效果很显然会差一些,因为出现误差的情况会比较多。这种情况下,IBk 就成了一个较优的选项了。这个时候有出现了一个问题,k 这个值如何确定,一般来说这个 k 是通过经验来判断的。
即决策树算法,决策树是对数据进行分类,以此达到预测的目的。该决策树方法先根据训练集数据形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练集数据中,重复该过程一直到形成正确的决策集。决策树代表着决策集的树形结构。决策树由决策结点、分支和叶子组成。决策树中最上面 的结点为根结点,每个分支是一个新的决策结点,或者是树的叶子。每个决策结点代表一个问题或决策,通常 对应于待分类对象的属性。每一个叶子结点代表一种可能的分类结果。沿决策树从上到下遍历的过程中,在每个结点都会遇到一个测试,对每个结点上问题的不同的 测试输出导致不同的分支,最后会到达一个叶子结点,这个过程就是利用决策树进行分类的过程,利用若干个变量来判断所属的类别。
ID3 算法是由 Quinlan 首先提出的。该算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。
以下是一些信息论的基本概念:
定义 1:若存在 n 个相同概率的消息,则每个消息的概率 p 是 1/n,一个消息传递的信息量为 Log2(n)
定义 2:若有 n 个消息,其给定概率分布为 P=(p1,p2 … pn),则由该分布传递的信息量称为 P 的熵,记为
I (p) =-(i=1 to n 求和 ) piLog2(pi) 。
定义 3:若一个记录集合 T 根据类别属性的值被分成互相独立的类 C1C2..Ck,则识别 T 的一个元素所属哪个类所需要的信息量为 Info (T) =I (p) ,其中 P 为 C1C2 … Ck 的概率分布,即 P= (|C1|/|T| … |Ck|/|T|)
定义 4:若我们先根据非类别属性 X 的值将 T 分成集合 T1,T2 … Tn,则确定 T 中一个元素类的信息量可通过确定 Ti 的加权平均值来得到,即 Info(Ti) 的加权平均值为:
Info(X, T) = (i=1 to n 求和 ) ((|Ti|/|T |) Info (Ti))
定义 5:信息增益度是两个信息量之间的差值,其中一个信息量是需确定 T 的一个元素的信息量,另一个信息量是在已得到的属性 X 的值后需确定的 T 一个元素的信息量,信息增益度公式为:
Gain(X, T) =Info (T)-Info(X, T)
J48 即决策树 C4.5 算法
C4.5 算法一种分类决策树算法 , 其核心算法是 ID3 算法。C4.5 算法继承了 ID3 算法的优点,并在以下几方面对 ID3 算法进行了改进:用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 在树构造过程中进行剪枝; 能够完成对连续属性的离散化处理; 能够对不完整数据进行处理。 C4.5 算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
Decision Table 即决策表
决策表 (Decision Table),是一中使用表的结构,精确而简洁描述复杂逻辑的方式。
JRip 即 RIPPER 算法
规则归纳学习从分类实例出发能够归纳出一般的概念描述。其中重要的算法为 IREP 算法和 RIPPER 算法。重复增量修枝(RIPPER)算法生成一条规则,随机地将没有覆盖的实例分成生长集合和修剪集合,规定规则集合中的每个规则是有两个规则来生成:替代规则和修订规则。
AdaBoostM1 即 AdaBoosting 算法
Adaboost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器 ( 弱分类器 ) ,然后把这些弱分类器集合起来,构成一个更强的最终分类器 ( 强分类器 ) 。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
Bagging 即 Bagging 方法
Bootstrps bagging boosting 都属于集成学习方法,将训练的学习器集成在一起。原理来源于 PAC 学习模型(Probably Approximately CorrectK)。其中的 Bagging 是 bootstrap aggregating 的缩写,是最早的 Ensemble 算法之一,它也是最直接容易实现,又具有不错的效果的算法之一。Bagging 中的多样性是由有放回抽取训练样本来实现的,用这种方式随机产生多个训练数据的子集,在每一个训练集的子集上训练一个同种分类器,最终分类结果是由多个分类器的分类结果多数投票而产生的。
Correlation coefficient (= CC) : 相关系数
Root mean squared error (= RMSE) : 均方根误差
Root relative squared error (= RRSE) : 相对平方根误差
Mean absolute error (= MAE) : 平均绝对误差
Root absolute error (= RAE) : 平均绝对误差平方根
Combined: (1-abs (CC)) + RRSE + RAE: 结合的
Accuracy (= ACC) : 正确率
注意,Correction coefficient 只适用于连续值类别,Accuracy 只适用于离散类别
Kappa statistic:这个指标用于评判分类器的分类结果与随机分类的差异度。
绝对差值(Mean absolute error):这个指标用于评判预测值与实际值之间的差异度。把多次测得值之间相互接近的程度称为精密度,精密度用偏差表示,偏差指测得值与平均值之间的差值,偏差越小,精密度则越高。
中误差(Root mean square error:RMSE):带权残差平方和的平均数的平方根,作为在一定条件下衡量测量精度的一种数值指标。中误差是衡量观测精度的一种数字标准,亦称“标准差”或“均方根差”。在相同观测条件下的一组真误差平方中数的平方根。因真误差不易求得 , 所 以通常用最小二乘法求得的观测值改正数来代替真误差。它是观测值与真值偏差的平方和观测次数 n 比值的平方根。中误差不等于真误差,它仅是一组真误差的代表值。中误差的大小反映了该组观测值精度的高低,因此,通常称中误差为观测值的中误差。
预测的准确率:这涉及到模型正确地预测新的或先前没见过的数据的类 标号能力。
速度:涉及到产生和使用模型的计算花费。
强壮性:这涉及给定噪声数据或具有空缺值的数据,模型正确预测的能力。
可伸缩性:这涉及给定大量的数据,有效的构造模型的能力。
可解释性:这涉及学习模型提供的理解和洞察的层次。
以下主要采用两种数据集(Monk's Problems 和 Satimage)来分别运行不同的分类算法,采用的是 Weka 数据挖掘工具。
1. 属性全部为 nominal 类型
2. 训练样本较少
3. 训练集数据的可视化图,该图根据直方图上方一栏所选择的 class 属性(attr6)来着色。
各分类器不做参数调整,使用默认参数进行得到的结果。
表 1. 分类器初步结果比较 分类器比较
预测的准确率比较
采用基于懒惰学习的 IB1、IBk 的分类器的误差率较低,采用基于概率统计的 BayesNet 分类器的误差率较高,其他的基于决策树和基于规则的分类器误差居于前两者之间,这是因为在样本较少的情况下,采用 IB1 时,生成的决策模型是在测试样本到来以后才生成,这样的学习模型可能更好的拟合局部的样本特性。采用统计学分类方法的 BayesNet 之所以准确度较低,可能是由于贝叶斯定理的成立本身需要很强的独立性假设前提,而此假设在实际情况中经常是不成立的。但是一般地,统计分类算法趋于计算量大。
进一步比较分类结果的散点图(其中正确分类的结果用叉表示,分错的结果用方框表示),发现 BayesNet 分类器针对属性 6(attr6)的预测结果分错的结果明显比 IB1 的分错结果要多些,而这些错误的散点中,又以属性 6 的取值为 2 的散点中错误的数目较多。
分类速度比较
Adaboost 的分类花了 0.08 秒,Bagging 的分类花了 0.03 秒,相对于其他的分类器,这两个分类器速度较慢。这是因为这两个算法采用迭代,针对同一个训练集,训练多种分类器,然后把这些分类器集合起来,所以时间消耗较长。
IBK 调优
【 KNN 】:6
扩大邻近学习的节点范围,降低异常点的干扰(距离较大的异常点)
【 DistanceWeighting 】:Weight by 1/distance
通过修改距离权重,进一步降低异常点的干扰(距离较大的异常点)
IBk 调优结果
调优后准确率从 60.65% 上升到 63.43%。
表 2. IBk 调优结果 J48 调优
【 binarySplits 】:True
采用 2 分法,生成决策树。
J48 调优结果
调优后准确率从 59.72% 上升到 64.35%,但是分类模型建立时间从 0 延长到了 0.31 秒
表 3. J48 调优结果
Salmage 数据集特点
1. 属性为 numeric 类型 , 共 37 个属性
2. 训练数据各类不平衡,测试数据各类不平衡
图 7. 训练数据集可视化图
各分类器初步分类效果分析
各分类器不做参数调整,使用默认参数得到的结果如下:
表 4. 分类器初步结果比较 分类器比较
预测的准确率比较
采用基于懒惰学习的 IB1、IBk 的分类器的准确率都较高,为 90.36%,采用 基于决策桩的 AdaBoostM 分类器的准确率较低,为 43.08%,贝叶斯分类器的准确 率较之前的数据集(Monk ’ s problem)有明显的提高,从 49% 到了 80% 左右,这主 要是因为样本空间的扩大,其他的分类器准确率也处于 80% 左右。
分类速度比较
DecisionTable 的分类花了 4.33 秒,Bagging 的分类花了 3.92 秒,J48 的分类模型建立花了 2.06 秒,相对于其他的分类器,这三个分类器速度较慢。
IBK 调优
【 KNN 】:6
扩大邻近学习的节点范围,降低异常点的干扰(距离较大的异常点)
【 DistanceWeighting 】:Weight by 1/distance
通过修改距离权重,进一步降低异常点的干扰(距离较大的异常点)
IBK 调优结果
调优后准确率从 90.36% 上升到 90.98%, 准确度有略微提升,说明通过扩大邻近学习的节点范围不能明显提高分类器的性能。
表 5. IBk 调优结果
J48 调优
【 binarySplits 】:True
采用 2 分法,生成决策树。
J48 调优结果
分类性能没有提升。说明采用 2 分法对分类没有影响。相反,时间比原来的算法有略微延长。
表 6. J48 调优结果
改进和建议
本文给出的调优方法只是一个简单的示例,实际上根据合理的参数调整,这些分类算法的效果还能得到更大的提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28