京公网安备 11010802034615号
经营许可证编号:京B2-20210330
说到建模分析师,你可能会臆想到的形象是怎样的?数据民工?金融精英?公司牛人?
他的发型可能是:
秃头
无刘海蓬松长发
他的装束大概是:
双肩背包(你的背包,背到现在还没烂)
运动鞋(竹杖芒鞋轻胜马,谁怕,一蓑烟雨任平生)
他的形象兴许是:
数据民工,励精图治。
数据精英,功成名遂。
数据前辈,德高望重。
那么走进建模分析师的工作,看看他们都在干什么吧。
如果你是SAS的忠实用户,身处银行、医药、电信等大型行业,你可能会接触到
信用卡违约预测之监测
如果你正在为万达做电影推荐系统,钟爱SPSS Moderler,你可能会构建
基于电影系统的关联推荐模型
如果你身处互联网行业,善于使用R语言,专注于CRM客户关系管理,你涉及的课题可能是:
客户管理管理与生命周期
最后,让我们来看看,企业BOSS们对建模分析师都有哪些要求呢?
以下标准取自猎聘网对建模分析师的共性要求整理所得,仅供参考:
硬性:
1. 学历背景:统招本科学历以上,数学/统计学/金融工程/计算机专业背景优先
2. 技能:熟练掌握SAS/SPSS/Python/R等至少一种工具,必须会SQL;
软性:
1. 工作经历:2~3年各行业建模分析工作经验;
2. 商业思维:具有较好的商业感觉和逻辑推理能力,善于从商业角度解读数据,有创造性思维和较强的学习能力,能推动数据分析结果落地。
那么,有没有什么捷径可以让我们更快速的成为建模分析师吗?
答案是:CDA LEVEL II建模分析师,四个专题,皆为大牛!带你快速入门建模分析师,体验不一样的数据挖掘!
【报名流程】
1. 在线填写报名信息
https://www.cda.cn/kecheng/4.html
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
SPSS Modeler专题
北京:2016年7月29-31,8月05-07日
上海:2016年10月21-23,28-30日
深圳:2016年9月16-18,23-25日
主题
以企业场景、真实案例教学方式,利用SPSS MODELER来贯穿数据挖掘建模的整个内容,包括基础、算法、建模、进阶、模型优化、应用等。
应用范围
《营销活动及信用风险控制》 《企业如何处理原始数据》 《如何根据业务选取有效变量》 《如何建立交叉销售模型》 《如何建立信用评分模型》 《如何进行模型优化》 《企业如何建立预测模型》 《客户分群精准化营销》
算法理论
KDD、CRISP DM—数据处理—统计检验—决策树、罗吉斯回归、包装法—贝氏网络—神经网络—支持向量机—随机森林—聚类分析—关联分析—序列分析
案例操作
【营销客户分群】【银行风险预测】【网站行为关联分析】【商品关联规则】【交叉销售】【客户流失预警】【天气预测】【药物治疗】【疾病诊断】【零售购物篮组合】【银行金融产品序列分析】
SAS专题
北京:2016年8月06-07,13-14,20-21日
上海:2016年8月13-14,20-21,27-28日
主题
以SAS为工具,讲解SAS软件中高级编程技术,并运用SAS进行数据挖掘流程化操作。
应用范围
《银行、证券等金融企业》《大型零售企业》《通信行业》《医疗行业》
软件技术
《SAS基础编程》《SAS数据管理》《SAS编程进阶》《SAS与SQL》《SAS宏语言》《程序优化》
算法理论
案例操作
【数据驱动的风险管理】【信用卡违约预测模型案例流程】【信用评分模型】【电信客户流失预警】
PYTHON专题
北京:2016年9月03-04,10-11,16-17日
主题
以PYTHON为工具,讲解PYTHON软件数据挖掘编程技术,并运用PYTHON
应用范围
《互联网企业》《网站分析》《网络产品与运营》《其他》
软件技术
《PYTHON语法基础》《PYTHON数据挖掘包》《主成分与因子分析》《聚类分析》《预测分析》《文本分析》《社会网络分析》
算法理论
线性回归与岭回归--可实现的Lasso算法--Logistic回归--广义线性模型--最近邻域法(KNN)--样条曲线--决策树--随机森林--支持向量机--线性判别模型--主成分分析PCA--样本聚类--关联规则与序贯分析
案例操作
【汽车类型聚类与地域购买偏好分析】【婚恋网站被约会可能性预测】【零售业客户价值预测模型】【新闻内容分类】【构造新闻热点词指数】【电信客户交友圈与流失预警】
R语言专题
北京:8月06-07,13-14日,20-21日(6天)
广州:8月06-07,20-21日,27-28日(6天)
主题
以R为工具,讲解R语言软件数据挖掘编程技术,并运用R
应用范围
《学术界》《客户预测与客户流失》《信用违约建模》《银行金融业》
软件技术
《R常用包》《R语言编程》《预测模型》《降维》《分类模型》《样本聚类》
算法理论
朴素贝叶斯--决策树--KNN--逻辑回归--神经网络--SVM--岭回归--Lasso算法--装袋法--Adaboost算法--主成分分析PCA--K-means--谱聚类--密度聚类--关联规则--序列模式
案例操作
【制作经营业务BI常用图表】【婚恋网站是否可以成功约会预测】【客户流失预测】【零售业客户价值预测模型】【信用违约建模案例】【银行客户购物篮分析】
|
|
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27