
说到建模分析师,你可能会臆想到的形象是怎样的?数据民工?金融精英?公司牛人?
他的发型可能是:
秃头
无刘海蓬松长发
他的装束大概是:
双肩背包(你的背包,背到现在还没烂)
运动鞋(竹杖芒鞋轻胜马,谁怕,一蓑烟雨任平生)
他的形象兴许是:
数据民工,励精图治。
数据精英,功成名遂。
数据前辈,德高望重。
那么走进建模分析师的工作,看看他们都在干什么吧。
如果你是SAS的忠实用户,身处银行、医药、电信等大型行业,你可能会接触到
信用卡违约预测之监测
如果你正在为万达做电影推荐系统,钟爱SPSS Moderler,你可能会构建
基于电影系统的关联推荐模型
如果你身处互联网行业,善于使用R语言,专注于CRM客户关系管理,你涉及的课题可能是:
客户管理管理与生命周期
最后,让我们来看看,企业BOSS们对建模分析师都有哪些要求呢?
以下标准取自猎聘网对建模分析师的共性要求整理所得,仅供参考:
硬性:
1. 学历背景:统招本科学历以上,数学/统计学/金融工程/计算机专业背景优先
2. 技能:熟练掌握SAS/SPSS/Python/R等至少一种工具,必须会SQL;
软性:
1. 工作经历:2~3年各行业建模分析工作经验;
2. 商业思维:具有较好的商业感觉和逻辑推理能力,善于从商业角度解读数据,有创造性思维和较强的学习能力,能推动数据分析结果落地。
那么,有没有什么捷径可以让我们更快速的成为建模分析师吗?
答案是:CDA LEVEL II建模分析师,四个专题,皆为大牛!带你快速入门建模分析师,体验不一样的数据挖掘!
【报名流程】
1. 在线填写报名信息
https://www.cda.cn/kecheng/4.html
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
SPSS Modeler专题
北京:2016年7月29-31,8月05-07日
上海:2016年10月21-23,28-30日
深圳:2016年9月16-18,23-25日
主题
以企业场景、真实案例教学方式,利用SPSS MODELER来贯穿数据挖掘建模的整个内容,包括基础、算法、建模、进阶、模型优化、应用等。
应用范围
《营销活动及信用风险控制》 《企业如何处理原始数据》 《如何根据业务选取有效变量》 《如何建立交叉销售模型》 《如何建立信用评分模型》 《如何进行模型优化》 《企业如何建立预测模型》 《客户分群精准化营销》
算法理论
KDD、CRISP DM—数据处理—统计检验—决策树、罗吉斯回归、包装法—贝氏网络—神经网络—支持向量机—随机森林—聚类分析—关联分析—序列分析
案例操作
【营销客户分群】【银行风险预测】【网站行为关联分析】【商品关联规则】【交叉销售】【客户流失预警】【天气预测】【药物治疗】【疾病诊断】【零售购物篮组合】【银行金融产品序列分析】
SAS专题
北京:2016年8月06-07,13-14,20-21日
上海:2016年8月13-14,20-21,27-28日
主题
以SAS为工具,讲解SAS软件中高级编程技术,并运用SAS进行数据挖掘流程化操作。
应用范围
《银行、证券等金融企业》《大型零售企业》《通信行业》《医疗行业》
软件技术
《SAS基础编程》《SAS数据管理》《SAS编程进阶》《SAS与SQL》《SAS宏语言》《程序优化》
算法理论
案例操作
【数据驱动的风险管理】【信用卡违约预测模型案例流程】【信用评分模型】【电信客户流失预警】
PYTHON专题
北京:2016年9月03-04,10-11,16-17日
主题
以PYTHON为工具,讲解PYTHON软件数据挖掘编程技术,并运用PYTHON
应用范围
《互联网企业》《网站分析》《网络产品与运营》《其他》
软件技术
《PYTHON语法基础》《PYTHON数据挖掘包》《主成分与因子分析》《聚类分析》《预测分析》《文本分析》《社会网络分析》
算法理论
线性回归与岭回归--可实现的Lasso算法--Logistic回归--广义线性模型--最近邻域法(KNN)--样条曲线--决策树--随机森林--支持向量机--线性判别模型--主成分分析PCA--样本聚类--关联规则与序贯分析
案例操作
【汽车类型聚类与地域购买偏好分析】【婚恋网站被约会可能性预测】【零售业客户价值预测模型】【新闻内容分类】【构造新闻热点词指数】【电信客户交友圈与流失预警】
R语言专题
北京:8月06-07,13-14日,20-21日(6天)
广州:8月06-07,20-21日,27-28日(6天)
主题
以R为工具,讲解R语言软件数据挖掘编程技术,并运用R
应用范围
《学术界》《客户预测与客户流失》《信用违约建模》《银行金融业》
软件技术
《R常用包》《R语言编程》《预测模型》《降维》《分类模型》《样本聚类》
算法理论
朴素贝叶斯--决策树--KNN--逻辑回归--神经网络--SVM--岭回归--Lasso算法--装袋法--Adaboost算法--主成分分析PCA--K-means--谱聚类--密度聚类--关联规则--序列模式
案例操作
【制作经营业务BI常用图表】【婚恋网站是否可以成功约会预测】【客户流失预测】【零售业客户价值预测模型】【信用违约建模案例】【银行客户购物篮分析】
|
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29