京公网安备 11010802034615号
经营许可证编号:京B2-20210330
本文将探究一个被称为二次规划的优化问题,这是一种特殊形式的非线性约束优化问题。二次规划在许多领域都有运用,比如投资组合优化、求解支持向量机(SVM)分类问题等。在R中求解二次规划有许多包,这次,我们将讨论一下quadprog包。在我们开始讲解案例之前,我们将先简短地介绍一下二次规划的机理。
对于一个二次规划问题,首先要考虑的就是一个二次目标函数:
Q(x)=12xTDx−dTx+c.
这里 x 在 ℝn 中是一个向量, D 是一个n×n 的对称正定矩阵,在 ℝn 中 d 是常数项约束,c 是一个标量常数。Q(x)函数通常以二次函数的形式出现,并且它高维的通项表达式是:
q(x)=ax2+bx+c
Q(x)的关键特性在于这是一个凸函数。
我们也对向量x构造一个线性约束集合,即x ∈ℝn。
我们把这些约束写成:
Ax=fBx≥g
这里,A 是一个 m1×n 的矩阵且约束为 m1≤n,BB 是一个 m2×n 的矩阵.向量 f 和向量 g的长度分别是m1和m2.
这是一种让我们可以充分考虑实际条件的标准型。比如我们让 x 强制满足
∑i=1nxi=1
的求和条件,或者满足ai≤xi≤bi的区间约束。接下来,我们将介绍如何将这些约束转化为矩阵表达。
用这个符号系统,我们可以简洁表示二次规划 (QP):
{minimizex∈ℝn:Q(x)=12xTDx−dTx+csubjectto:Ax=fBx≥g
考虑目标函数:
Q(x,y)==12[xy][2−1−12][xy]−[−32][xy]+4x2+y2−xy+3x−2y+4.
我们这个约束条件下的可行域内寻求最小化:
yyy≥≥≤2−x−2+x3.
我们可以找到这个可行域的顶点并在R画出整个可行域:
plot(0, 0, xlim = c(-2,5.5), ylim = c(-1,3.5), type = "n", xlab = "x", ylab = "y", main="Feasible Region") polygon(c(2,5,-1), c(0,3,3), border=TRUE, lwd=4, col="blue")
SHAPE \* MERGEFORMAT
想要用quadprog包求解二次规划,我们需要同时转化我们的目标函数和约束条件为矩阵形式。这里是官方文档的说明:
This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic programming problems of the form min(-d^T b + 1/2 b^T D b) with the constraints A^T b >= b_0.
可惜官方文档多可读性不高,我们很难得知如何准确地转化二次型Q(x,y)为一个矩阵形式。首先,我们观察到,对于任意常数 c, 都存在MinQ(x,y)+c 和 Q(x,y)的解相等。因此,我们可以忽略二次规划中的常数项:
D=[2−1−12]d=[−32].
我们可以写出约束方程的矩阵形式:
⎡⎣⎢⎢1−1011−1⎤⎦⎥⎥[xy]≥⎡⎣⎢⎢2−2−3⎤⎦⎥⎥
因此:
A=⎡⎣⎢⎢1−1011−1⎤⎦⎥⎥Tb0=⎡⎣⎢⎢2−2−3⎤⎦⎥⎥
quadprog包默认是求解最小化问题,目标函数二次,约束一次。所以,我们的约束条件默认的形式也就是AX>=bvec。通常我们需要把一些原来是求极大值的问题或者<=约束通过乘以负号来转化。
这是R的完整实现:
· 参数Dmat表示海赛矩阵
· 参数dvet表示一阶向量,和Dmat的维数要相对应。
· 参数Amat表示约束矩阵,默认的约束都是是>=。
· 参数bvet表示右边值,由向量,和Amat的维数要相对应。
· 参数 meq 表示从哪一行开始Amat矩阵中的约束是需要被当作等式约束的。
(1/6,11/6) 点是唯一满足约束条件和 Q(x,y)的最小化目标,但 (−4/3,1/3)点才是 Q(x,y) 的最小值点。iterations,Lagrangian 和 iact 都是用来描述quadprog算法性能的。对于这些值之后我们将进一步讨论。现在,让我们先可视化二次规划的解。为此,我们在Q(x,y)的可行域边界添加一个外侧的等高线图。
在图中,深绿色区域表示Q(x,y) 表面目标函数值较小的解,而亮色表示目标函数值较大的解。红点是Q(x,y)的全局最小值点,而黄点表示二次规划的解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26