
人工智能与机器学习有哪些不同
人工智能早已不是一个新名词,它的发展历史已经有几十年。从80年代早期开始,当时计算机科学家设计出可以学习和模仿人类行为的算法。在学习方面,最重要的算法是神经网络,但由于模型过于强大,没有足够的数据支持,导致不是很成功。然而,在一些更具体的任务中,使用数据来适应函数的想法获得了巨大的成功,这也构成了机器学习的基础。在模仿方面,人工智能在图像识别、语音识别和自然语言处理方面有着广泛的应用。专家们花费了大量时间去创建边缘计算,彩色型材,N-gram语言模型,语法树等,不料所获成绩平平。
传统的机器学习
机器学习(ML)技术在预测中发挥了重要作用,机器学习已经经历了多代,有一套完备的模型结构,如:
·线性回归
·Logistic回归
·决策树
·支持向量机
·贝叶斯模型
·正则化模型
·集成模型
·神经网络
每一个预测模型都基于一定的算法结构,参数可进行调整。训练预测模型涉及以下步骤:
1.选择模型结构(例如,逻辑回归、随机森林等)。
2.用训练数据(输入和输出)对模型进行反馈。
3.学习算法将输出最优模型(即具有特定参数的模型,使训练误差最小化)。
每个模型都有自己的特点,在某些任务中表现很好,在其他方面也却不尽人意。但一般来说,我们可以把它们分为低功耗(简单)模型和大功率(复杂)模型。在不同的模型之间进行选择是一个非常棘手的问题。传统上,使用低功耗/简单模型比使用高功率/复杂模型要好,原因如下:
·在我们拥有大量的处理能力之前,训练高功率模型需要花费很长时间。
·直到我们有一个庞大的数据量,培养高功率模型会导致过拟合问题(由于高功率模型具有丰富的参数,可以适应多种数据的形状,我们可能最终会训练出一个与当前训练数据非常相关的模型,而不是对未来数据进行预测)。
然而,选择低功耗模型存在着所谓的"欠拟合"问题,即模型结构过于简单,无法在较复杂的情况下适应训练数据。(假设下面的数据有一个二次关系:y=5*X的平方;没有方法可以拟合一个线性回归:y=A,B,B,B,无论我们选择什么样的A和B。)
为了减轻"不适合的问题",数据科学家通常会应用他们的"领域知识"来产生"输入特性",它与输出有更直接的关系。(例如,返回到二次关系y=5*X的平方),然后通过选取a=5和b=0,拟合线性回归。
机器学习的一个主要障碍是这个特征工程步骤,它要求领域专家在进入培训过程之前识别重要的信号。特征工程步骤非常手工,需要大量的领域专门知识,因此成为当今大多数机器学习任务的主要瓶颈。换句话说,如果我们没有足够的处理能力和足够的数据,那么我们必须使用低功耗/简单的模型,这需要我们花大量的时间和精力来创建适当的输入特性。这是大多数数据科学家花时间做的事情。
神经网络的回归
在2000年代早期,随着大容量数据时代大量的细粒度事件数据的收集,随着云计算和大规模并行处理基础设施的进步,机器处理能力得到了极大的提高。我们不再局限于低功耗/简单的模型。例如,当今最流行的两种主流机器学习模型是随机森林和梯度增强树。然而,尽管它们都非常强大,并提供非线性模型拟合训练数据,数据科学家仍然需要仔细地创建功能,以达到良好的性能。
与此同时,计算机科学家重新使用了许多层的神经网络来完成这些人类模拟任务。这给新出生的DNN(深度神经网络)在图像分类和语音识别的任务提供了一个重大的突破。
DNN的主要区别是,你可以发出原信号,(例如,RGB像素值)直接到DNN没有创造任何特定于域的输入特征。通过多层次的神经元(这就是为什么它被称为"深"的神经网络),能够自动生成相应的功能,通过各层最后提供了一个很好的预测。这大大节省了"特征工程"的努力,也是数据科学家遇到的一个主要瓶颈。
DNN也演变成许多不同的网络结构,所以我们美国有线电视新闻网(卷积神经网络),RNN(神经网络)、LSTM(长短期记忆)、GAN(生成对抗网络),迁移学习,注意模型…整个光谱被称为"深度学习",这是当今全机器学习界关注的焦点。
另一个关键的部分是如何模仿一个人(或动物)学习。想象一下感知/行为/奖赏周期的非常自然的动物行为。一个人或动物首先会通过感知他或她处于什么状态来理解环境。基于这一点,他或她会选择一个"动作"把他或她带到另一个"状态",然后他或她会得到一个"奖励",如此循环重复。
这种学习方法(称为强化学习)与传统的有监督机器学习的曲线拟合方法有很大的不同。特别是,强化学习的发生非常迅速,因为每一个新的反馈(如执行一个动作和获得一个奖励)立即被发送来影响随后的决定。强化学习已经获得了巨大的成功在自动驾驶汽车以及AlphaGO(下棋机器人)。
强化学习也提供了一个平滑的预测和优化集成,因为它保持一个信念的当前状态和可能的转移概率时采取不同的行动,然后作出决定,哪些行动会带来最好的结果。
与经典机器学习技术相比,深度学习提供了一个更强大的预测模型,通常能产生良好的预测。与经典的优化模型相比,强化学习提供了更快的学习机制,并且更适应环境的变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28