京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习算法在数据分析领域发挥着重要的作用,帮助人们从海量的数据中提取有用的信息和洞察。下面是一些常用于数据分析的机器学习算法。
线性回归 (Linear Regression):线性回归是一种用于建立变量之间线性关系的监督学习算法。它通过拟合最佳线来预测一个或多个连续变量的值。线性回归广泛应用于销售趋势、市场预测和经济分析等领域。
逻辑回归 (Logistic Regression):逻辑回归是一种二分类算法,用于预测离散输出变量的概率。它常用于风险评估、市场营销和医学疾病预测等领域。
决策树 (Decision Trees):决策树是一种基于树状结构的监督学习算法,用于分类和回归问题。它通过一系列的判断节点将数据集划分为不同的类别或取值。决策树易于理解和解释,常用于客户分群、欺诈检测和推荐系统等任务。
随机森林 (Random Forests):随机森林是一种集成学习算法,结合多个决策树的预测结果来提高准确性和稳定性。它适用于大规模数据集、特征选择和异常检测等应用。
支持向量机 (Support Vector Machines, SVM):支持向量机是一种用于分类和回归问题的监督学习算法。它通过在特征空间中构建超平面来将不同类别的样本分开。SVM在文本分类、图像识别和生物信息学等领域有广泛应用。
K近邻算法 (K-Nearest Neighbors, KNN):K近邻算法是一种基于实例的监督学习算法,用于分类和回归问题。它通过计算样本与最近的K个邻居之间的距离来进行预测。KNN常用于推荐系统、图像识别和模式识别等任务。
主成分分析 (Principal Component Analysis, PCA):主成分分析是一种无监督学习算法,用于降低数据维度和提取主要特征。它通过线性变换将原始数据投影到一组新的正交变量上。PCA广泛应用于数据可视化、特征提取和异常检测等领域。
聚类算法 (Clustering):聚类算法是一种无监督学习算法,用于将数据集中的对象分组成具有相似特征的类别。常见的聚类算法包括K均值聚类和层次聚类。聚类在市场细分、社交网络分析和图像分割等领域有广泛应用。
总之,这些机器学习算法在数据分析中发挥着重要作用,帮助人们从复杂的数据中提取有用的信息和模式。根据具体问题的性质和数据的特点,选择适当的算法可以提高数据分析的效果和准确性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05