
作者:CDA数据分析师
大数据分析与数据分析这几年一直都是个高频词,很多人都开始纷纷转行到这个领域,也有不少人开始跃跃欲试,想找准时机进到大数据或数据分析领域。如今大数据分析和数据分析火爆,要说时机,可谓处处都是时机,关键要明了的一点是,大数据分析和数据分析两者的根本区别在哪里,只有真正了解了,才会知晓更加适合自己的领域是大数据分析师还是数据分析师。毕竟职场如战场,时间就是生活,不容儿戏,更不容怠慢。下面我来好好告诉大家两者的本质区别到底是什么!
大数据分析:指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据分析指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理,因此不用考虑数据的分布状态(抽样数据是需要考虑样本分布是否有偏,是否与总体一致)也不用考虑假设检验,这点也是大数据分析与一般数据分析的一个区别。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
大数据分析与数据分析最核心的区别是处理的数据规模不同,由此导致两个方向从业者的技能也是不同的。在CDA人才能力标准中从理论基础、软件工具、分析方法、业务分析、可视化五个方面对数据分析师与大数据分析师进行了定义。
【数据分析师的要求】
数据分析师的理论要求:统计学、概率论和数理统计、多元统计分析、时间序列、数据挖掘。
工具要求:必要:Excel、SQL可选:SPSS MODELER、R、Python、SAS等
分析方法要求:除掌握基本数据处理及分析方法以外,还应掌握高级数据分析及数据挖掘方法(多元线性回归法,贝叶斯,神经网络,决策树,聚类分析法,关联规则,时间序列,支持向量机,集成学习等)和可视化技术。
业务分析能力:可以将业务目标转化为数据分析目标;熟悉常用算法和数据结构,熟悉企业数据库构架建设;针对不同分析主体,可以熟练的进行维度分析,能够从海量数据中搜集并提取信息;通过相关数据分析方法,结合一个或多个数据分析软件完成对海量数据的处理和分析。
结果展现能力:报告体现数据挖掘的整体流程,层层阐述信息的收集、模型的构建、结果的验证和解读,对行业进行评估,优化和决策。
【大数据分析师的要求】
理论要求:统计学、概率论和数据库、数据挖掘、JAVA基础、Linux基础。
工具要求:必要: SQL、Hadoop、HDFS、Mapreduce、Mahout、Hive、Spark
可选:RHadoop、Hbase、ZooKeeper等
分析方法要求:熟练掌握hadoop集群搭建;熟悉nosql数据库的原理及特征,并会运用在相关的场景;熟练运用mahout、spark提供的进行大数据分析的数据挖掘算法,包括聚类(kmeans算法、canopy算法)、分类(贝叶斯算法、随机森林算法)、主题推荐(基于物品的推荐、基于用户的推荐)等算法的原理和使用范围。
业务分析能力:熟悉hadoop+hive+spark进行大数据分析的架构设计,并能针对不同的业务提出大数据架构的解决思路。掌握hadoop+hive+ Spark+tableau平台上Spark MLlib、SparkSQL的功能与应用场景,根据不同的数据业务需求选择合适的组件进行分析与处理。并对基于Spark框架提出的模型进行对比分析与完善。
结果展现能力:报告能体现大数据分析的优势,能清楚地阐述数据采集、大数据处理过程及最终结果的解读,同时提出模型的优化和改进之处,以利于提升大数据分析的商业价值。
综上大数据分析与数据分析的根本区别就是分析的思维与分析所用的工具不同。大家在求职或转行过程认清自己对两者的偏好和自己的兴趣所在,以及自己的能力更适合在哪个领域发挥,还有自己所在城市对两者的职业需求,综合天时地利人和三个条件,我们才能做出更理智更客观更科学的抉择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15