京公网安备 11010802034615号
经营许可证编号:京B2-20210330

作者 | Anish Phadnis
翻译 | Mika
本文为 CDA 数据分析师原创作品,转载需授权
人脑是最神奇的。你知道我更感兴趣的是什么吗?是我们的学习能力。我们如何能够适应并学习全新的技能,然后应用到日常生活之中呢?
我有一个6岁的弟弟,我看着他从懵懵懂懂的小婴儿逐渐长大。他学会了如何爬行、走路、跑;如何学会说话,理解简单的语法和简单的数学。
本文中我就要谈谈如何让机器复制这种学习的能力。
假设我想教机器如何区分狗和猫。这很简单,我的弟弟很容易就能做到。但是如何将其编程在机器上呢?我们不能简单的认为,所有的猫都是尖耳朵,或所有的狗都有毛。如果我们试图用代码写下所有猫狗间的差异,从而来解决这个问题,那么这是非常繁琐的,而且成功的可能性很低。
通过机器学习,算法能够理解猫与狗之间的差异,而无需刻意进行编程。它不需要我们去指导应该如何区分猫和狗。算法只需要看许多不同的猫和狗图像,并学习当中的区别。
这与我弟弟学会辨别猫狗很类似。不需要告诉他猫狗的差异,只需要告诉他,这张图是狗,这张图是猫。随着时间的推移,小孩子就能慢慢了解猫狗的分别是什么样了。
总而言之,机器学习能够让机器学会如果执行任务,而无需明确地编程。
我们知道机器学习是什么,那么深层学习到底是什么呢?
深度学习算法被称为神经网络,它以人脑为模型,模仿人类学习的方式。
让我们以区分猫狗的例子来理解神经网络的运行原理。从本质上讲,神经网络接收输入,这里也就是猫狗的图像;然后得出输出,即标签为猫或狗的图像。在输入和输出之间,隐藏层从图像中提取特征。例如,这张图中有长鼻子,锋利的牙齿,尾巴等,然后通过这些信息预测图像为猫还是狗。
有时候这些特征很重要,比如狗的鼻子比猫长;而有时特征并不重要。为了解决这个问题,神经网络给某些特征赋予了比其他特征更多的权重,即如果一张图像中的动物鼻子较长,则更有可能是狗。最终大量的特征汇集在一起,神经网络通过足够的特征判断图像是否是狗,如果是的话则输出这张图是是狗。
但是如果出错了呢?当然,神经网络无法一开始就准确无误。神经网络判断图像为猫,然而实际上是狗,这是学习的地方。
那这时会怎样呢?它进入隐藏层,神经网络决定将相应的权重放在相应的功能上。如果出错,网络必须进行调整,从而得出正确的结果。经过反复的调整,最终神经网络将能够分辨出两者间的差异。
我实际上能够构建这样的神经网络,并得出95%的准确率。结果并不完美,但仍然是惊人的。
机器学习能解决哪些问题
在机器学习中,有3个不同的分支,它们都分别解决不同类型的问题。
监督学习
监督学习是我到目前为止在向你解释的,因为它是最容易理解的。给出输入,并得知输出是什么。我们有猫的图像,而且知道它被标记为猫。通过给合适的特征赋予合适的权重,从而得出正确的结果,即图像为猫。
这就类似你在复习细胞生物学测试。你在在测试自己是否掌握了细胞不同部分的功能。你正在学习细胞结构,即输出,并将其与输出——细胞各部分的功能相匹配。这就是你在学习从输入到输出的过程。
无监督学习
无监督学习是一个数据集,但当中没有标签或没有正确的答案。当中只有数据点,无监督学习的目的是找出数据中的模式,并帮助得出结论。
举一个简单的例子。给监督学习算法一个正方形,告诉它是正方形,然后在给出一个三角形,告诉它这是三角形,诸如此类。接着它会理解是正方形是什么样的,三角形又是什么样的。
而在无监督的学习问题中,它只会给出一堆形状,而不会被告知它这些是形状。在这种情况下,无监督学习算法将相似的形状组合在一起,可能是边的数量相同的形状,具有相同区域的形状,具有相似颜色的形状等等。接着它会找到基础模式能够将形状分类。
这就是无监督学习算法如何尝试在数据点中找到模式的例子。算法确定这是数据点之间的最佳分割,因为所有黄点与其他黄点最相似,所有红点与其他红点最相似,并且所有蓝点与其他蓝点相似。
强化学习
这实际上是我在机器学习中最喜欢的主题,也是我在编程方面投入时间最多的部分。最吸引我的就是以下视频中的这种行走机器人。
强化学习是理解如何在环境中让奖励最大化奖励的智能体。在以上视频中,当智能体能够行走时就将获得奖励。为了将奖励最大化,它将尽可能长时间地行走。
智能体通过测试所有可能的腿部动作来实现行走。智能体会因此获得奖励,因此它会继续行并重复这一行动。
这很类似当我六岁的弟弟学走路时,妈妈会在他迈步时会鼓掌和欢呼。当他摔倒时他会停止让他跌倒的行动,并继续采取获得妈妈鼓掌欢呼的步骤。最终,他学会了跑。
强化学习每次都让我大吃一惊。
应用
让我们来谈谈机器学习在现实中的应用。
自然语言处理(NLP)
计算机通过0和1中说话,我们用文字说话。我们的谈话方式与计算机的谈话方式之间存在差距,我们必须训练计算机来理解我们的语言。使用NLP,计算机不仅能够转录单词,而且能够从中提取意义,甚至能以某种语调进行对话!有了Siri,Alexa和Cortana等助手,与智能手机交谈最终会像在手机上使用键盘一样普遍。
计算机视觉(CV)
NLP让计算机具有通话能力,CV让计算机能够看到。这被应用在自动驾驶汽车中,用于检测不同的物体,如其他汽车、行人以及道路上的车道。这能够让计算机从摄像机中提取信息。这还可以用于简单的人脸识别和检测算法,正如Facebook上使用的那样。
想象一下,Mark每天都在他家附近的公园里散步,但突然有一天他摔倒了,心脏病发作了。心脏病像许多其他疾病一样是非常突然的,几乎没有任何预兆。我们身体中的某些模式预示着即将发生的某些健康方面的问题。通过使用Fitbits等设备能够来跟踪我们身体的健康数据,从而能够分析这些数据并提前开始进行预测。通过分析健康数据,在Mark心脏病发作前一周,医生们就能够知道,并及时提供他需要的帮助。
关键要点
机器学习能够机器学习如何执行任务,而且无需明确地编程。
深度学习是机器学习的一个子集,它使用称为神经网络的特定算法,该算法是以人脑为模型的。
监督学习具有输入和输出,其目的是弄清楚如何从输入到输出。无监督学习具有数据点,其目的只是在数据中找到模式。
强化学习是机器人在物理和虚拟世界中学习如何走路、跳跃和执行其他人类行为的方式。
机器学习和深度学习的潜力是无限的,它将以前所未有的方式彻底改变世界。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27