京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者: Admond Lee
编译: Mika
本文为 CDA 数据分析师原创作品,转载需授权
在深入探讨这个问题前,让我们退后一步,尝试回答另一个问题:为什么要成为数据科学家?
你一定知道这个职业,数据科学家被《哈佛商业评论》称为是“21世纪最性感的工作”,并且在Glassdoor上连续三年被评为是美国最受追捧的工作。最近IBM预计,到2020年数据科学家的市场需求将飙升28%。
这些非常吸引人的就业前景也让许多人投入数据科学的领域。
那么,现在你可能想知道:为什么我会去拒绝一份数据科学家的工作呢?
我希望在本文中通过分享我的故事,让你一睹我在数据科学领域的经历。让我们开始吧!
有时,职位名称≠工作性质
由于职业目标的不同,职位名称的重要性因人而异。
同样由于人生目标的不同,工作性质的重要性也因人而异。
因此,职位名称和工作性质难以达到完全一致。这常常会让许多求职者陷入两难境地,他们必须从中做出选择,而我也是求职者之一。
申请数据科学家工作
几个月前,我向好几家公司投了简历,希望获得一份数据科学家的工作。正如预期的那样,我常常会受到拒绝的邮件,比如:
感谢您申请XX公司的数据科学家职位,但很抱歉…
感谢您申请XX公司的数据科学家职位,由于我们收到了大量的简历,在此我很遗憾地通知您......
我很沮丧,但我没有放弃。我不断学习和提高自己的技能。
终于有一天,我收到了LinkedIn的面试安排邮件。
我非常兴奋,做了许多的功课,对公司进行了重复地了解,以及我该如何让自己的技能符合公司的职位描述。
工作描述中列出了大量广泛的技能和非技术技能,以及涵盖各个行业的从业经验。职责包括从基础到全局的数据和非数据相关的工作,这意味着求职者必须兼顾多个角色,同时还要符合职位要求。
在我看来,这份工作描述太离谱了,并且要求至少3到5年的初级职位工作经验。
我可能不符合当中70%的工作要求,但我还是自信满满地去面试了,我相信我通过我的技能和经验为公司增添价值,,并在工作中学习。
选择工作性质而不是职位名称
令我惊讶的是,职位描述中提到的70%的工作要求并不在实际工作范围内。
我的工作是为不同的公司和构建用于可视化的仪表板,当中无需进行数据分析。当然,数据可视化是任何数据科学过程中的一个重要部分,但是这个工作性质并不符合我所想做的事情。
我真正想做的是,从了解业务问题、收集数据、进行可视化、原型设计、调整并将模型部署到现实应用阶段,我在使用数据解决复杂问题,从而完成挑战中收获满足感。
然而工作描述与公司给出的实际工作范围形成了鲜明的对比,这让我感到无比困惑。
在上一轮面试之后,我拿到了数据科学家工作的offer。在同一段时间里,我还拿到了另一家公司研究工程师的offer。这份工作描述更加明确,实际的工作范围也符合我想做的事情。
记得我之前提到的,大多数求职者所面临的职位名称与工作性质之间的两难选择吗?最终我选择了后者。
结语
对我来说,职位名称是暂时的,但工作性质,这才是真正让我感兴趣并带来挑战性的,而且还能让我在工作中收获宝贵的技能和经验,这才是最重要的。
直到现在,尽管会面临挑战和障碍,我仍然享受着学习的过程。如果每天都学习新的东西,每天都将不同。
谢谢阅读本文。如果你曾经遇到任何类似的问题,我希望你知道,陷入困境是没关系的,特别是当你刚进入数据科学领域时。
花点时间弄清楚,在你的职业生涯中以及在将来的生活中,你希望实现什么。可能你无法找到明确的答案,但是不要放弃,继续寻找当中的答案,迟早你将作出更明智的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19