
作者: Admond Lee
编译: Mika
本文为 CDA 数据分析师原创作品,转载需授权
在深入探讨这个问题前,让我们退后一步,尝试回答另一个问题:为什么要成为数据科学家?
你一定知道这个职业,数据科学家被《哈佛商业评论》称为是“21世纪最性感的工作”,并且在Glassdoor上连续三年被评为是美国最受追捧的工作。最近IBM预计,到2020年数据科学家的市场需求将飙升28%。
这些非常吸引人的就业前景也让许多人投入数据科学的领域。
那么,现在你可能想知道:为什么我会去拒绝一份数据科学家的工作呢?
我希望在本文中通过分享我的故事,让你一睹我在数据科学领域的经历。让我们开始吧!
有时,职位名称≠工作性质
由于职业目标的不同,职位名称的重要性因人而异。
同样由于人生目标的不同,工作性质的重要性也因人而异。
因此,职位名称和工作性质难以达到完全一致。这常常会让许多求职者陷入两难境地,他们必须从中做出选择,而我也是求职者之一。
申请数据科学家工作
几个月前,我向好几家公司投了简历,希望获得一份数据科学家的工作。正如预期的那样,我常常会受到拒绝的邮件,比如:
感谢您申请XX公司的数据科学家职位,但很抱歉…
感谢您申请XX公司的数据科学家职位,由于我们收到了大量的简历,在此我很遗憾地通知您......
我很沮丧,但我没有放弃。我不断学习和提高自己的技能。
终于有一天,我收到了LinkedIn的面试安排邮件。
我非常兴奋,做了许多的功课,对公司进行了重复地了解,以及我该如何让自己的技能符合公司的职位描述。
工作描述中列出了大量广泛的技能和非技术技能,以及涵盖各个行业的从业经验。职责包括从基础到全局的数据和非数据相关的工作,这意味着求职者必须兼顾多个角色,同时还要符合职位要求。
在我看来,这份工作描述太离谱了,并且要求至少3到5年的初级职位工作经验。
我可能不符合当中70%的工作要求,但我还是自信满满地去面试了,我相信我通过我的技能和经验为公司增添价值,,并在工作中学习。
选择工作性质而不是职位名称
令我惊讶的是,职位描述中提到的70%的工作要求并不在实际工作范围内。
我的工作是为不同的公司和构建用于可视化的仪表板,当中无需进行数据分析。当然,数据可视化是任何数据科学过程中的一个重要部分,但是这个工作性质并不符合我所想做的事情。
我真正想做的是,从了解业务问题、收集数据、进行可视化、原型设计、调整并将模型部署到现实应用阶段,我在使用数据解决复杂问题,从而完成挑战中收获满足感。
然而工作描述与公司给出的实际工作范围形成了鲜明的对比,这让我感到无比困惑。
在上一轮面试之后,我拿到了数据科学家工作的offer。在同一段时间里,我还拿到了另一家公司研究工程师的offer。这份工作描述更加明确,实际的工作范围也符合我想做的事情。
记得我之前提到的,大多数求职者所面临的职位名称与工作性质之间的两难选择吗?最终我选择了后者。
结语
对我来说,职位名称是暂时的,但工作性质,这才是真正让我感兴趣并带来挑战性的,而且还能让我在工作中收获宝贵的技能和经验,这才是最重要的。
直到现在,尽管会面临挑战和障碍,我仍然享受着学习的过程。如果每天都学习新的东西,每天都将不同。
谢谢阅读本文。如果你曾经遇到任何类似的问题,我希望你知道,陷入困境是没关系的,特别是当你刚进入数据科学领域时。
花点时间弄清楚,在你的职业生涯中以及在将来的生活中,你希望实现什么。可能你无法找到明确的答案,但是不要放弃,继续寻找当中的答案,迟早你将作出更明智的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07