京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师原创作品
马云在2018年云栖大会上提到:“按需制造的核心是数据,数据是制造业必不可少的生产资料,以前制造业发展好不好是看电力指数,未来我们看数据”。
有前瞻眼光的企业家早已把数据看作重要的资产,抢占未来市场的利器。如何挖掘数据这座“大金矿”已经成为很多企业的重要任务,而其中充当这座“大金矿”矿工的首要职业就是——数据分析师。
那么,数据分析在一个企业中起到哪些关键性作用呢?我们可以通过分析招聘网站中数据分析岗位的“岗位职责”信息来得到一些我们想要的答案。
CDA数据分析研究院于2018年9月爬取某知名招聘网站中以“数据分析”为关键字的招聘信息。经过数据清洗之后,我们对剩下的5298条招聘信息进行分析。
我们发现,数据分析在不同的企业所起到的作用大小会有所不同:
从上图可见,当前数据分析主要在互联网/电子商务、计算机软件、IT服务这三个行业起作用,这些行业对数据分析的招聘需求占了就业市场的60%以上。接下来我们也会对这些行业进行重点分析。
我们对所有行业的“岗位职责”信息生成词云图:
通过对高频词汇的分析,CDA数据分析师总结出数据分析在企业中所起作用的主要几个方面:
1、市场营销方面:
(1)精准寻找目标用户
利用数据挖掘技术,发现用户特征,构建用户画像,预测用户行为,对用户进行合理分群,用户偏好预测、用户个性化推荐等。
(2)用户行为研究
用户行为分析研究,针对用户的多维度属性、标签和行为数据,用户流失预警、用户生命周期分析、用户影响力分析、用户价值分析等相关用户行为研究。
(3)行业竞争品和行情监控
监测并分析行业竞品情况,收集并解读相关用户和市场研究报告,为公司产品规划提供支持。
2、运营管理方面:
(1)提供最新运营情况
对日报、周报、月报等日常报告和数据的制作与维护,即使反馈最新的运营情况。
(2)为运营管理提供决策支持
基于公司业务的运营情况展开深入分析,提出运营业务发展策略建议。
(3)监控运营活动效能
监控、分析运营活动,评估运营活动效能,提出营销活动优化和成本控制解决方案,并主导或协助落实。
(4)团队绩效考核
针对运营团队整体KPI考核及情况制定对应绩效考核方案并跟踪绩效考核实施。
如果我们对互联网/电子商务的数据分析岗位职责描述作词云分析(上图),会发现互联网/电子商务行业对数据分析在市场营销和运营方面的作用尤为重视。
3、产品研发方面
(1)产品优化支持
对相关业务线产品进行用户分析,营收分析,行为分析、活动效果评估等,产出相应报告,为产品优化和业务运营提供支持。
(2)新产品研发支持
根据已有数据为新产品的开发提供决策依据和方向,实现业务所需的数据分析、数据产品设计。
4、大数据平台支持方面
对于数据量容易达到海量级别的行业,比如金融行业(基金、证券、期货、投资),或者是提供数据服务的IT企业,往往会有大数据平台搭建和维护等需求。
我们通过下面两个行业的词云图可以看出,词云里面有大量大数据平台和工具的高频词汇,比如Hadoop、Spark、Hbase、Hive等。
我们可以从中归纳出数据分析在这方面工作所起到的作用:
(1)对公司Hadoop/Hive/Spark等大数据基础设施的研发与运维,提升运行效率、稳定性和可用性;
(2)大数据项目的数据挖掘和建模,并对实现BI分析、数据产品开发、算法开发提供系统性支持;
除了上面提及的作用,数据分析在不同的行业也会起到其他不同的作用。比如在教育行业可能还会需要数据分析师发表学术论文或专利,或者科研成果转换等。物流企业会需要数据分析师对仓储效率、成本、库存等方面分析挖掘。互联网金融企业会对反欺诈信用风控系统、策略、模型开发有更多的需求。
总的来讲,有数据产生的行业就需要数据分析岗位,以数据驱动的产品和经营活动更需要数据分析师。数据分析师在不同行业、不同职能部门,其所起到的作用也会有所不同。但是在DT时代,能更好发挥数据分析作用的企业必定能抢占到发展先机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26