京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代数据分析的必备技能
时间:
初级:2018年7月29-31日(三天)北京, 8月6-8日(三天)上海
高级:2018年7月31-8月2日(三天)北京, 8月8-10日(三天)上海
全程:2018年7月29-8月2日 (五天)北京, 8月6-10日(五天)上海
地点:北京市海淀区厂洼街3号丹龙大厦附近/上海市南京东路培训教室
费用:
初级:3300元 / 2800元 (仅限全日制本科生及硕士研究生优惠价)
高级:3600元 / 3100元 (仅限全日制本科生和硕士研究生优惠价)
全程:6000元 / 5400元 (仅限全日制本科生和硕士研究生优惠价)
(食宿自理)
安排:上午9:00-12:00;下午2:00-5:00;答疑
报名链接:https://www.cda.cn/kecheng/68.html,点击“立即报名”
R简介:
R语言由新西兰奥克兰大学ross ihaka和robert gentleman 开发。R语言是自由软件,可以放心大胆地使用,且具有非常强大的统计分析和作图功能,而且更重要的是R软件具有非常丰富的网上资源,目前R软件有3000多种贡献包,几乎可以实现所有的统计方法,目前大部分的统计学家和计量经济学家都使用R语言,而且越来越多的数据分析实务人员也开始使用R语言。R语言具有简单易学,功能强大,体积小(仅40m左右),完全免费,可自由开发等特点,且R语言和S语言语法基本相同,绝大部分程序是互相兼容的。学习R软件正成为一种趋势。
R软件最优美的地方是它能够修改很多前人编写的包的代码做各种你所需的事情,实际你是站在巨人的肩膀上。——Google首席经济学家Hal Varian
学员对象:
金融、医疗、通讯、咨询、电子商务等领域的数据分析人员、数据挖掘工程师、数据科学家;
高校硕士生、博士生、青年教师等。
1. 让学员快速入门并熟练掌握R语言,掌握如何利用R丰富的网上资料和帮助系统,学会基本的编程方法。
2. 以实际案例引入,深入浅出地讲解如何使用R语言进行数据挖掘和机器学习,让学员不仅掌握R语言的使用,更重要的是学会数据挖掘和机器学习的思想、原理和方法。
3. 学完本课程后,使学员基本上可以使用R语言进行实际的数据挖掘工作。尤其学会使用R语言对批量处理的实务数据分析,大大提高工作效率。
|
专题名称 |
授课内容 |
|
第1讲(3小时) R语言入门 |
目标:掌握R语言的基本用法 1.R语言介绍 2.编辑软件Rstudio使用 3.R程序包的载入与使用 4.数据对象及运算(向量、矩阵、数组、列表与数据框处理) |
|
第2讲(3小时) 数据读写 R基本编程 |
目标:掌握用R编写函数和数据的读写 1. R数据读入与读出 (读入txt、xls、SPSS、SAS、stata以及数据库文件) 2.R 函数编写 3.R的条件与循环函数 4.高效编程技巧介绍 |
|
第3讲(3小时) 数据预处理 探索性分析 |
目标:掌握数据预处理与探索性分析 1.数据预处理 2.缺失值处理 3.随机数生成 4.常用统计方法的蒙特卡洛模拟 5.随机抽样 6.单变量数据分析与作图 7.双变量数据分析与作图 8.多变量数据分析与作图 案例1:统计作图在调查数据中的应用 案例2:统计作图在临床医学中的应用 |
|
第4讲(3小时) |
4.一元线性回归 5.多元线性回归 6.逐步回归 案例1:广告营销计划案例 案例2:信用卡债务预测案例 案例3:房价预测案例 |
|
第5讲(3小时) 线性分类方法 |
目标:掌握经典线性分类方法及其应用 1.Logistic模型 2.LDA判别分类 3.QDA判别分类 案例1:信用卡违约预测案例 案例2:股价涨跌方向预测案例 |
|
第6讲(3小时) 重抽样方法 互动交流讨论 |
目标:掌握经典重抽样方法 1.验证集方法 2.交叉验证 3.Bootstrap方法 案例1:量化投资资产配置案例 案例2:汽车每加仑汽油里程数预测案例 互动交流讨论 |
|
专题名称 |
授课内容 |
|
第1讲 线性分类方法 |
目标:掌握经典线性分类方法及其应用 1.Logistic模型 2.LDA判别分类 3.QDA判别分类 案例1:信用卡违约预测案例 案例2:股价涨跌方向预测案例 |
|
第2讲(3小时) 重抽样方法 |
目标:掌握经典重抽样方法 1.验证集方法 2.交叉验证 3.Bootstrap方法 案例1:量化投资资产配置案例 案例2:汽车每加仑汽油里程数预测案例 |
|
第3讲(3小时) 组合预测 |
课程目标:掌握决策树和组合预测方法及其实际应用。 1.CART决策树 2.Bagging 3.随机森林 4.Boosting算法 案例1:棒球运动员薪水预测案例 案例2:心脏病预测案例 案例3:信用卡违约预测案例 |
|
第4讲(3小时) |
课程目标:掌握支持向量机分类方法 1.间隔分类器 2.支持向量分类器 3.支持向量机 案例1:基因表达数据案例 案例2:股票涨跌方向预测 |
|
第5讲(3小时) 变量选择与高维数据 |
目标:掌握数据挖掘中高维数据分析方法及其实际应用 1.LASSO 2.SCAD 3.MCP 4.Group LASSO 案例1:基因筛选 案例2: 股票选股 |
|
第6讲(3小时) 无监督学习 主成分分析 主成分回归 聚类分析 |
目标:掌握无监督学习方法及其应用。 1.主成分分析 2.主成分回归 3.Kmeans聚类分析 4.系统聚类分析 案例1:广告支出主成分分析 案例2:犯罪率主成分分析 案例3:学生考试成绩主成分分析 案例4:客户细分聚类案例 |
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
报名流程:
1:点击报名链接,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费(需要刷卡或对公转账的请报名后与我们联系);
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
联系方式:
魏老师
QQ:2881989714
Mail:vip@pinggu.org
Tel: 010-68478566
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27