
DT时代,如何成为十字复合型数据分析师
当前社会正从IT到DT智能时代,传统行业嫁接互联网,产生的是加法效应;大数据创新驱动,产生的是乘法效应,价值呈指数递增。DT时代拼的是人才和创新价值的能力,拼的是你的数据能够给社会创造多少价值,用数据挣钱才是未来真正所在。
相应的,DT时代对人才的要求也越来越高,人才的进步也从“1”字型人才到“T”字型人才再进化到“十”字型人才。所谓“1”字型人才是指具备某个领域的专业深度,但往往会一条路走到头,在其他领域没有竞争力。就拿数据分析师来说,最牛的分析师不是什么方法和软件都会,而是什么行业领域都知道怎么做,即使用最简单的方法,也可解决跨界难题。 而“T”字型人才是指同时具备专业深度和知识面的广度。这样的人才既能在自己的领域做到极致,也能解决其他领域的问题,但是缺乏的是创新思维和能力。分析师常拘泥于自己熟悉的那套流程,用单一的思路放到任何行业依葫芦画瓢,而往往会遇到瓶颈无法解决问题。
那么,“十”字型人才就是同时具有某个专业领域的深度,跨界行业的知识宽度,以及拔尖的创新力度。对于分析师来讲,具备深厚的专业技术能解决技术瓶颈,具备宽广的跨界知识能越过行业壁垒,具备变通的创新能走出分析师对自身的局限,这样会发展为CDO,CEO等更高的职位。
当今社会,越来越多的斜杠青年,越来越多的复合人才,十字型是对这个时代“枪手人才”的最好定义。
那么,如何成为
数据时代十字型人才?
想要成为数据时代十字型人才,你需要具备:
No1. 垂直专业深度
就分析师而言,你需要掌握概率论和统计理论基础,能够熟练运用Excel、R、SPSS、SAS等一门专业分析软件,有良好的商业理解能力,能够根据业务问题指标利用常用数据分析方法进行数据的处理与分析,并利用可视化方法得出逻辑清晰的业务报告。垂直深入,扎实专业技能功底。
No2. 横向知识宽度
行业经验为你的知识注入了新鲜的血液,你需要深入了解行业跨界知识与来自零售电商、互联网、金融等领域的应用场景模块,如:客户关系管理、增长黑客、风险控制等。
No3. 向上的创新力度。
这部分你需要突破传统思维的局限,加入批判思维、概率决策思维、博弈思维、系统思维、先发影响力等“决策黑客”内容,创新突破,发现业务改进和驱动的增长点。
这必然是一个艰辛的过程,但是新时代迫使你需要作出改变。
成为十字型人才过程艰辛,
如何才能更舒适地艰辛?
活在舒适圈,我们常忘掉自控和努力,但永远忘不了理想。一边是床、沙发、咖啡,一边是课、技能、书本,此刻该如何选择?有人认为,那就躺在床上喝着咖啡看书吧。错了,这是用学习来为舒适找的一个掩护,没有艰辛,只有舒适。很多人都问,如何利用业余时间赚钱?如何能快速找到数据分析的相关工作?但从没想过要付出多少艰辛才能达到目的。所以生活中你可以见到很多嘴强选手,而实干家从不会问这些问题。天下没有不劳而获的人,所谓艰辛是通往某一个目标的必经体验,这是一个前提共识。那么如何让艰辛变得更有效率,更舒适?若能在更舒适的体验中达到A+,在更有价值的艰辛中达到A+,我想这就是17年底最好的产品之一。
综上而言,
A+,是一种追求确定性极致的精神。
A+,是极致的同时更具备复合型能力。
A+,是让艰辛的过程更具价值更加舒适。
于是,我们推出了:
A+学位之数据分析师项目
CDA A PLUS学位项目【数据分析师】,由CDA数据分析师人才教育品牌联合美库尔、GrowingIO及深谙数据界多年具备成熟项目经验的大牛名师联合打造的新型在线学习产品。旨在打造DT时代“十字型”数据精英。“十字型”概括为【垂直专业深度】,【横向知识宽度】,【纵上创新力度】三个方面。本课程在【垂直的专业深度】上遵循经典的“CDA Level”标准大纲,从数据库到统计概率到数据分析与挖掘垂直深入,扎实专业技能功底。在【横向知识宽度】上加入行业跨界知识与来自零售电商、互联网、金融等领域的应用场景模块,如“客户关系管理”、“增长黑客”、“风险控制”等,引入更多的业务场景和案例。在【纵上创新力度】上突破传统思维的局限,加入逻辑思维、量化思维、概率思维、系统思维等“决策黑客”内容,并在每一模块课程后加入实际项目演练,创新落地。课程体验方面,A+学位课程更贴合学员在线碎片化学习的需求和习惯,加入在线练习功能和课后作业指导服务,为每一位立志于在数据科学领域有所建树的学员提供完美、贴心的在线学习解决方案。
你可能想问,CDA A Plus
数据分析主要学什么?
迈出成为数据分析师的第一步,初级数据分析师课程大纲:
01:深入浅出数据科学基础
学习了解数据分析的前世今生与未来,了解数据分析的整体框架与流程,了解数据分析所涉及的各类知识及高效学习方法,培养学员专业的数据思维。
02:让数据说话-玩转EXCEL BI商业报表
学习了解使用EXCEL分析功能、数据处理方法、数据透视方法、数据可视化、商业智能分析报表进行系统讲解,帮助学员全面掌握EXCEL商业智能和数据分析技巧。
03:分析师的第一道面试题-SQL数据库
学习使用从数据库Mysql中取数的能力,从SQL入门到数据表及字段操作、SQL查询链接、SQL商业应用案例,帮助学员全面提高SQL查询与处理能力。
04:增长黑客-产品、用户、网站的增长圣经
学习产品、用户、网站数据分析的思维和方法,并基于活跃、留存、转化三大应用场景和案例,带领学员探索增长黑客的奥秘。
05:枯燥但不枯萎的专业理论-统计概率基础
学习统计学的概率论基础、统计量与抽样分布、计算描述性统计数据、参数估计、假设检验和方差分析。培养学员基础的统计鉴定思维和能力。
学习使用R语言的基本语法知识,并利用R进行描述性分析和推断性统计分析。
07:最快的数据获取方式-Python爬虫
学习使用Python编程基础、初始爬虫知识、网络请求Requests、解析HTML文档BeautifulSoup、反爬虫及异常处理。并通过实例演示。
08:市场调研与数据处理技术(基于R)
学习市场调研方法,数据抽样技术,并掌握数据清理、数据变换和数据规约的方法。
09:透过现象看本质-回归分析预测
学习最常用的数据挖掘模型-回归分析。包含模型原理、构建模型、模型诊断和模型选择,并使用R演示案例。
10:期中项目实战作业
进阶前沿技术能力,成为抢手人才,高级数据分析师课程大纲:
11:深入洞察你的客户-客户画像
学习使用聚类分析算法的基本原理,说明银行业如何利用聚类技术来建立客群分析模型,使银行针对不同客群,采用不同之营销策略,让银行获利最大化。
12:最简单的机器学习算法 -K最近领
学习使用KNN算法,并结合使保险公司数据可以筛选对寿险有兴趣的目标客群,以提升公司的获利。
13:数学与科学的反映-贝斯网络
学习贝式网络算法,并通过银行业案例说明如何利用贝式网络技术来建立信用评分模型,以降低公司损失。
14:分而治之的算法模型-决策树
掌握决策树算法原理,同时也结合制造业及汽车业案例说明如何利用回归树技术来建立CPU效能及油耗的预测模型,以协助产品的设计及改良。
15:人工智能的底层模型-神经网络
掌握神经网络算法基本原理,并使用零售业案例如何利用神经网络技术来建立便利超商选点模型,以降低公司损失,提升公司获利。
16:应用最广的模型之一罗吉斯回归
学习罗吉斯回归算法,同时学习如何利用罗吉斯回归技术来建立电信客户流失预测模型,以避免客户的流失,降低公司损失。
17:最受欢迎的智能算法-支持向量机
学习支持向量机算法,并说明生技业如何利用支持向量机技术来建立细胞样本分类模型,以有效分类细胞样本,进行适当的处理。
18:预知未来的算法 - 时间序列分析
学习时间序列分析方法,并通过电商渠道实际数据集,预测电脑销量,对库存和产品改良提出建议。
19:发掘购物篮规则 - 关联分析
学习掌握关联规则与购物篮分析,相似性推荐与协同过滤。并通过案例说明如何应用关联分析推荐用户他喜欢的电影?
学习集成算法,结合电信业及银行业案例说明如何利用集成学习算法来建立电信产品交叉销售模型及银行小额信贷营销模型,以增加客户价值,提升公司获利。
21:自然语言处理与机器学习结合 - 文本分析
介绍文本分析的方法和技术,包含中文分词、关键词提取、文字云、文本分析方法等,并结合舆情主题分析案例。
22:统计学的新兴领域 -社会网络分析
学习社会网络分析方法,说明电信业如何利用社会网络分析技术,协助传统客户流失预测模型,更有效的避免客户的流失,降低公司损失。
23:人脑工作机制的模拟器 -深度学习
说明媒体业如何利用深度学习算法来建立影像物体侦测模型,以做为自动驾驶系统的基础,提升自动驾驶系统的准确性。
24: 就业技能直通车 – 大型项目实作案例
以大型实际案例(数据大小超过20G)说明零售业如何利用以上介绍技术,进行忠诚客户的预测,以确保对上述技术之熟悉度。
25 :突破传统思维局限 -决策黑客
学习突破传统思维局限的方法,掌握批判性思维、概率思维、博弈思维、系统思维、先发影响力。
26:期末考试
期末项目实战作业
CDA A Plus学位具体如何安排?
时间:2018年2月24日-7月22日
方式:利用碎片时间,在线学习
费用:
数据分析师(初级),3900元,2月24日-5月11日,学习11周(每周近10小时)
数据分析师(进阶),4900元,5月12日-7月22日,学习10周(每周10+小时)
数据分析师(全程),7900元,2月24日-7月22日,学习21周(每周10+小时)
说了以上这么多,实际上还是有点懵逼,不如直接体验这个由CDA联合国内领先企业Growing io,Merkle共同打造的学位课程:
「CDA A+学位数据分析师」课程全新上线,2月24日准时开课,第一期区限量仅 200 席位,点击阅读原文报名!
我有疑问,该如何咨询?
课程顾问:陈老师
18010006628(微信)
QQ:2881989710
邮箱:chenwenjing@pinggu.org
欢迎来撩,扫描二维码加好友并回复A+,免费获得预听课礼包,拉入CDA A+学位交流群
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15