
数据分析这门技术,看似“高大上”,但真正懂得其原理的人却不多。很多人以为掌握了几种软件工具就算会数据分析了,但事实上,数据分析的核心远不止如此。
今天,我们就来深入聊聊数据分析的基本原理和关键步骤,带你从“会用”迈向“懂得”。
数据分析的第一步就是“找数据”。没有数据,后续的分析都无从谈起。
数据的来源可以说是五花八门,比如:
常见的收集方法也很多,包括手动输入、爬虫技术、API接口调用等。
???? 小提示:有时,找到“对的”数据比找到“大量的”数据更重要。精准、可靠的数据才是分析成功的关键。
你以为数据一收集完就能直接分析?太天真了!
大部分数据分析师都会告诉你,90%的时间花在“数据预处理”上。
数据预处理包括哪些操作?简单总结一下:
???? 实战小技巧:
有一次,我负责的一个项目中,客户数据里“客户生日”字段有30多种格式(如YYYY-MM-DD、DD/MM/YYYY等),每次分析前都得“人工处理”,真是“数据劝退”现场!后来,学会了使用正则表达式,几秒钟就能搞定,省时又高效。
在数据清洗完后,分析师的好奇心会被激发出来。
“这组数据中有什么有趣的现象?”
“是否存在某种趋势、模式或异常?”
这一步,我们会使用到各种统计方法,比如:
???? 灵魂拷问:你有多久没认真看过一份“数据分布图”?
数据分布的可视化(如直方图、散点图等)经常会揭示出意想不到的秘密。
数据的“价值”到底从哪来?
这一步,才是价值的诞生地。
我们会用统计建模和机器学习模型,在数据中挖掘出隐藏的“规则”和“模式”,以便未来预测。常用的方法有:
✨ 个人经验:如果你想快速入门这部分的技能,学一学Python的scikit-learn库,大部分常用的建模技术都能实现。
你是否遇到过“老板只看图不看表”的情况?
这就是数据可视化的意义!
当你把数据转化为图形、图表,甚至是动态图,分析结果会变得更直观。比如:
???? 实用建议:在做数据可视化时,配色方案不要太“花”,尽量保持简洁清晰,让关键信息一目了然。
数据分析的目的,不是数据,而是决策。
前面的所有步骤,都是为“提供决策支持”服务的。
在这一步,我们将所有的分析结果呈现给管理层或客户,并帮助他们做出选择:
在很多企业中,数据分析报告的“最终产品”就是一份PPT或BI仪表盘,呈现清晰的建议、结论和行动计划。
如果你能理解上面6个关键步骤,恭喜你,已经掌握了数据分析的基本框架!
数据分析并不是一个“全能必懂”的领域,而是需要你在实践中不断学习。这里有一个建议:
如果你已经在这条路上前行,别担心遇到困难,因为每一段努力,都会在未来的某一天成为你的底气。
“数据不撒谎,但我们需要会倾听它的声音。”
希望这篇文章能为你拨开迷雾,让你在数据分析的道路上少走弯路,多点清晰!
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13