京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:潮汐
来源:Python 技术
数据分析是什么?
数据分析的目的是什么?
数据分析为什么在企业应用中体现得越来越重要?
今天的文章主要讲解数据分析与可视化的相关步骤以及每个步骤需要用到的 Python 库,给正在从事数据分析或者学习数据分析的同学提供工作或者学习思路。
小编也正在学习的路上,如有不妥的地方希望大家多多指正,咱们一起前进。
数据分析指用适当的统计、分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
其中数据也称为观测值,是实验、测量、观察、调查等的结果。
数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。
数据分析通常包括前期准备、数据爬取、数据预处理、数据分析、可视化绘图及分析评估六个步骤:
数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关,所以数据可视化是体现数据分析最直观的表达,通过数据可视化能直接明了的展示数据分析的结果,它能清晰的表达数据分析结果信息。
以最直观的方式将数据分析结果呈现给人们。
在使用 Python 做数据分析时,常常需要用到各种扩展包,常见的包括 Numpy、Scipy、Pandas、Sklearn、Matplotlib等,如下所示:
提供数值计算的扩展包,拥有高效的处理函数和数值编程工具,用于数组、矩阵和矢量化等科学计算操作。很多扩展包都依赖于它。
import numpy as np
np.array([4,5,6,23,4,5])
SciPy是一个开源的数学、科学和工程计算包,提供矩阵支持,以及矩阵相关的数值计算模块。它是一款方便、易于使用、专为科学和工程设计的Python工具包,包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。
它是 Python 强大的数据分析和探索数据的工具包,旨在简单直观地处理标记和关系数据。
import pandas as pd
pd.read_csv('test.csv')
Scikit-Learn 为常见的机器学习算法提供了一个简洁而规范的分析流程,包含多种机器学习算法。该库结合了高质量的代码和良好的文档,使用起来非常方便,并且代码性能很好,其实它就是用 Python 进行机器学习的行业标准。
from sklearn import linear_model
linear_model.LinearRegression()
它是Python强大的数据可视化工具、2D绘图库,可以轻松生成简单而强大的可视化图形,可以绘制散点图、折线图、饼状图等图形。但其库本身过于复杂,绘制的图需要大量的调整才能变精致。
import matplotlib.pyplot as plt
plt.plot(x,y,'p')
Seaborn 是由斯坦福大学提供的一个 Python 绘图库,绘制的图表更加赏心悦目,它更关注统计模型的可视化,如热图。Seaborn 能理解 Pandas 的 DataFrame 类型,所以它们一起可以很好地工作。
import seaborn as sns
sns.distplot(births['ccc'], kde=False)
以上几个模块是数据分析与可视化中功能最强大的扩展包,
今天的文章主要是对数据分析与可视化整体目标与思路进行整理,希望今天的文章对大家有所帮助!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15