
今天主要讲述的内容是关于一元线性回归的知识,Python实现,包括以下内容:
1.机器学习常用数据集介绍
2.什么是线性回顾
3.LinearRegression使用方法
4.线性回归判断糖尿病
希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解。如果文章中存在不足或错误的地方,还请海涵~
同时这篇文章是我上课的内容,所以参考了一些知识,强烈推荐大家学习斯坦福的机器学习Ng教授课程和Scikit-Learn中的内容。由于自己数学不是很好,自己也还在学习中,所以文章以代码和一元线性回归为主,数学方面的当自己学到一定的程度,才能进行深入的分享及介绍。抱歉~
一. 数据集介绍
1.diabetes dataset数据集
数据集参考:http://scikit-learn.org/stable/datasets/
这是一个糖尿病的数据集,主要包括442行数据,10个属性值,分别是:Age(年龄)、性别(Sex)、Body mass index(体质指数)、Average Blood Pressure(平均血压)、S1~S6一年后疾病级数指标。Target为一年后患疾病的定量指标。
输出如下所示:
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 27 02:37:05 2016
@author: yxz15
"""
from sklearn import datasets
diabetes = datasets.load_diabetes() #载入数据
print diabetes.data #数据
print diabetes.target #类标
print u'总行数: ', len(diabetes.data), len(diabetes.target) #数据总行数
print u'特征数: ', len(diabetes.data[0]) #每行数据集维数
print u'数据类型: ', diabetes.data.shape #类型
print type(diabetes.data), type(diabetes.target) #数据集类型
"""
[[ 0.03807591 0.05068012 0.06169621 ..., -0.00259226 0.01990842
-0.01764613]
[-0.00188202 -0.04464164 -0.05147406 ..., -0.03949338 -0.06832974
-0.09220405]
...
[-0.04547248 -0.04464164 -0.0730303 ..., -0.03949338 -0.00421986
0.00306441]]
[ 151. 75. 141. 206. 135. 97. 138. 63. 110. 310. 101.
...
64. 48. 178. 104. 132. 220. 57.]
总行数: 442 442
特征数: 10
数据类型: (442L, 10L)
<type 'numpy.ndarray'> <type 'numpy.ndarray'>
"""
2.sklearn常见数据集
常见的sklearn数据集包括,强烈推荐下面这篇文章:
sklearn包含一些不许要下载的toy数据集,见下表,包括波士顿房屋数据集、鸢尾花数据集、糖尿病数据集、手写字数据集和健身数据集等。
3.UCI数据集
二. 什么是线性回归
1.机器学习简述
机器学习(Machine Learning )包括:
a.监督学习(Supervised Learning):回归(Regression)、分类(Classification)
例:训练过程中知道结果。小孩给水果分类,给他苹果告诉他是苹果,反复训练学习。在给他说过,问他是什么?他回答准确,如果是桃子,他不能回答为苹果。
b.无监督学习(Unsupervised Learning):聚类(Clustering)
例:训练过程中不知道结果。给小孩一堆水果,如苹果、橘子、桃子,小孩开始不知道需要分类的水果是什么,让小孩对水果进行分类。分类完成后,给他一个苹果,小孩应该把它放到苹果堆中。
c.增强学习(Reinforcement Learning)
例:ML过程中,对行为做出评价,评价有正面的和负面两种。通过学习评价,程序应做出更好评价的行为。
d.推荐系统(Recommender System)
2.斯坦福公开课:第二课 单变量线性回归
这是NG教授的很著名的课程,这里主要引用52nlp的文章,真的太完美了。推荐阅读该作者的更多文章:
Coursera公开课笔记: 斯坦福大学机器学习第二课"单变量线性回归(Linear regression with one variable)"
<1>模型表示(Model Representation)
房屋价格预测问题,有监督学习问题。每个样本的输入都有正确输出或答案,它也是一个回归问题,预测一个真实值的出书。
训练集表示如下:
对于房价预测问题,讯息过程如下所示:
其中x代表房屋的大小,y代表预测的价格,h(hypothesis)将输入变量映射到输出变量y中,如何表示h呢?可以表示如下公式,简写为h(x),即带一个变量的线性回归或单变量线性回归问题。
<2>成本函数(Cost Function)
对于上面的公式函数h(x),如何求theta0和theta1参数呢?
构想: 对于训练集(x, y),选取参数θ0, θ1使得hθ(x)尽可能的接近y。如何做呢?一种做法就是求训练集的平方误差函数(squared error function)。
Cost Function可表示为:
并且选取合适的参数使其最小化,数学表示如下:
总的来说,线性回归主要包括一下四个部分,分别是Hypothesis、Parameters、Cost Function、Goal。右图位简化版,theta0赋值为0。
然后令θ1分别取1、0.5、-0.5等值,同步对比hθ(x)和J(θ0,θ1)在二维坐标系中的变化情况,具体可参考原PPT中的对比图,很直观。
<3>梯度下降(Gradient descent)
应用的场景之一最小值问题:
对于一些函数,例如J(θ0,θ1)
目标: minθ0,θ1J(θ0,θ1)
方法的框架:
a. 给θ0, θ1一个初始值,例如都等于0;
b. 每次改变θ0, θ1的时候都保持J(θ0,θ1)递减,直到达到一个我们满意的最小值;
对于任一J(θ0,θ1) , 初始位置不同,最终达到的极小值点也不同,例如以下例子:
3.一元回归模型
<1>什么是线性回归?
回归函数的具体解释和定义,可查看任何一本“概率论与数理统计”的书。我看的是“陈希孺”的。
这里我讲几点:
1)统计回归分析的任务,就在于根据 x1,x2,...,xp 线性回归和Y的观察值,去估计函数f,寻求变量之间近似的函数关系。
2)我们常用的是,假定f函数的数学形式已知,其中若干个参数未知,要通过自变量和因变量的观察值去估计未知的参数值。这叫“参数回归”。其中应用最广泛的是f为线性函数的假设:
这种情况叫做“线性回归”。
3)自变量只有一个时,叫做一元线性回归。
f(x) = b0+b1x
自变量有多个时,叫做多元线性回归。
f(x1,x2,...,xp) = b0 + b1x1 + b2x2 + ... + bpxp
4)分类(Classification)与回归(Regression)都属于监督学习,他们的区别在于:
分类:用于预测有限的离散值,如是否得了癌症(0,1),或手写数字的判断,是0,1,2,3,4,5,6,7,8还是9等。分类中,预测的可能的结果是有限的,且提前给定的。
回归:用于预测实数值,如给定了房子的面积,地段,和房间数,预测房子的价格。
<2>一元线性回归
假设:我们要预测房价。当前自变量(输入特征)是房子面积x,因变量是房价y.给定了一批训练集数据。我们要做的是利用手上的训练集数据,得出x与y之间的函数f关系,并用f函数来预测任意面积x对应的房价。
假设x与y是线性关系,则我们可以接着假设一元线性回归函数如下来代表y的预测值:
我们有训练集了,那么问题就成了如何利用现有的训练集来判定未知参数 (θ0,θ1) 的值,使其让h的值更接近实际值y? 训练集指的是已知x,y值的数据集合!
一种方法是计算它的成本函数(Cost function),即预测出来的h的值与实际值y之间的方差的大小来决定当前的(θ0,θ1)值是否是最优的!
常用的成本函数是最小二乘法:
<3>模型总结
整个一元线性回归通过下面这张图总结即可:
最后,梯度下降和多元回归模型将继续学习,当我学到一定程度,再进行分享。
三. LinearRegression使用方法
LinearRegression模型在Sklearn.linear_model下,它主要是通过fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型。
sklearn中引用回归模型的代码如下:
from sklearn import linear_model #导入线性模型
regr = linear_model.LinearRegression() #使用线性回归
print regr
输出的函数原型如下所示:
LinearRegression(copy_X=True,
fit_intercept=True,
n_jobs=1,
normalize=False)
fit(x, y): 训练。分析模型参数,填充数据集。其中x为特征,y位标记或类属性。
predict(): 预测。它通过fit()算出的模型参数构成的模型,对解释变量进行预测其类属性。预测方法将返回预测值y_pred。
这里推荐"搬砖小工053"大神的文章,非常不错,强烈推荐。
引用他文章的例子,参考:scikit-learn : 线性回归,多元回归,多项式回归
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 28 00:44:55 2016
@author: yxz15
"""
from sklearn import linear_model #导入线性模型
import matplotlib.pyplot as plt #绘图
import numpy as np
#X表示匹萨尺寸 Y表示匹萨价格
X = [[6], [8], [10], [14], [18]]
Y = [[7], [9], [13], [17.5], [18]]
print u'数据集X: ', X
print u'数据集Y: ', Y
#回归训练
clf = linear_model.LinearRegression() #使用线性回归
clf.fit(X, Y) #导入数据集
res = clf.predict(np.array([12]).reshape(-1, 1))[0] #预测结果
print(u'预测一张12英寸匹萨价格:$%.2f' % res)
#预测结果
X2 = [[0], [10], [14], [25]]
Y2 = clf.predict(X2)
#绘制线性回归图形
plt.figure()
plt.title(u'diameter-cost curver') #标题
plt.xlabel(u'diameter') #x轴坐标
plt.ylabel(u'cost') #y轴坐标
plt.axis([0, 25, 0, 25]) #区间
plt.grid(True) #显示网格
plt.plot(X, Y, 'k.') #绘制训练数据集散点图
plt.plot(X2, Y2, 'g-') #绘制预测数据集直线
plt.show()
运行结果如下所示,首先输出数据集,同时调用sklearn包中的LinearRegression()回归函数,fit(X, Y)载入数据集进行训练,然后通过predict()预测数据12尺寸的匹萨价格,最后定义X2数组,预测它的价格。
数据集X: [[6], [8], [10], [14], [18]]
数据集Y: [[7], [9], [13], [17.5], [18]]
预测一张12英寸匹萨价格:$13.68
输出的图形如下所示:
线性模型的回归系数W会保存在他的coef_方法中,截距保存在intercept_中。score(X,y,sample_weight=None) 评分函数,返回一个小于1的得分,可能会小于0。
print u'系数', clf.coef_
print u'截距', clf.intercept_
print u'评分函数', clf.score(X, Y)
'''
系数 [[ 0.9762931]]
截距 [ 1.96551743]
评分函数 0.910001596424
'''
其中具体的系数介绍推荐如下资料:sklearn学习笔记之简单线性回归 - Magle
四. 线性回归判断糖尿病
1.Diabetes数据集(糖尿病数据集)
糖尿病数据集包含442个患者的10个生理特征(年龄,性别、体重、血压)和一年以后疾病级数指标。
然后载入数据,同时将diabetes糖尿病数据集分为测试数据和训练数据,其中测试数据为最后20行,训练数据从0到-20行(不包含最后20行),即diabetes.data[:-20]。
from sklearn import datasets
#数据集
diabetes = datasets.load_diabetes() #载入数据
diabetes_x = diabetes.data[:, np.newaxis] #获取一个特征
diabetes_x_temp = diabetes_x[:, :, 2]
diabetes_x_train = diabetes_x_temp[:-20] #训练样本
diabetes_x_test = diabetes_x_temp[-20:] #测试样本 后20行
diabetes_y_train = diabetes.target[:-20] #训练标记
diabetes_y_test = diabetes.target[-20:] #预测对比标记
print u'划分行数:', len(diabetes_x_temp), len(diabetes_x_train), len(diabetes_x_test)
print diabetes_x_test
输出结果如下所示,可以看到442个数据划分为422行进行训练回归模型,20行数据用于预测。输出的diabetes_x_test共20行数据,每行仅一个特征。
划分行数: 442 422 20
[[ 0.07786339]
[-0.03961813]
[ 0.01103904]
[-0.04069594]
[-0.03422907]
[ 0.00564998]
[ 0.08864151]
[-0.03315126]
[-0.05686312]
[-0.03099563]
[ 0.05522933]
[-0.06009656]
[ 0.00133873]
[-0.02345095]
[-0.07410811]
[ 0.01966154]
[-0.01590626]
[-0.01590626]
[ 0.03906215]
[-0.0730303 ]]
2.完整代码
改代码的任务是从生理特征预测疾病级数,但仅获取了一维特征,即一元线性回归。【线性回归】的最简单形式给数据集拟合一个线性模型,主要是通过调整一系列的参以使得模型的残差平方和尽量小。
线性模型:y = βX+b
X:数据 y:目标变量 β:回归系数 b:观测噪声(bias,偏差)
参考文章:Linear Regression Example - Scikit-Learn
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 28 01:21:30 2016
@author: yxz15
"""
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
#数据集
diabetes = datasets.load_diabetes() #载入数据
#获取一个特征
diabetes_x_temp = diabetes.data[:, np.newaxis, 2]
diabetes_x_train = diabetes_x_temp[:-20] #训练样本
diabetes_x_test = diabetes_x_temp[-20:] #测试样本 后20行
diabetes_y_train = diabetes.target[:-20] #训练标记
diabetes_y_test = diabetes.target[-20:] #预测对比标记
#回归训练及预测
clf = linear_model.LinearRegression()
clf.fit(diabetes_x_train, diabetes_y_train) #注: 训练数据集
#系数 残差平法和 方差得分
print 'Coefficients :\n', clf.coef_
print ("Residual sum of square: %.2f" %np.mean((clf.predict(diabetes_x_test) - diabetes_y_test) ** 2))
print ("variance score: %.2f" % clf.score(diabetes_x_test, diabetes_y_test))
#绘图
plt.title(u'LinearRegression Diabetes') #标题
plt.xlabel(u'Attributes') #x轴坐标
plt.ylabel(u'Measure of disease') #y轴坐标
#点的准确位置
plt.scatter(diabetes_x_test, diabetes_y_test, color = 'black')
#预测结果 直线表示
plt.plot(diabetes_x_test, clf.predict(diabetes_x_test), color='blue', linewidth = 3)
plt.show()
运行结果如下所示,包括系数、残差平方和、方差分数。
Coefficients :[ 938.23786125]
Residual sum of square: 2548.07
variance score: 0.47
绘制图形如下所示,每个点表示真实的值,而直线表示预测的结果,比较接近吧。
同时绘制图形时,想去掉坐标具体的值,可增加如下代码:
plt.xticks(())
plt.yticks(())
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13