京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分类:基本概念、决策树与模型评估 分类任务就是确定对象属于那个预定义的目标类。就是通过学习得到一个目标函数f,把每个属性集映射到一个预先定义的类标号y. 一、预备知识 分类任务的输入数据是记录的集合,每条记录称为实例,用元组(x,y)表示,其中x是属性的集合,y是一个特殊的集合。 描述性建模:分类模型可以作为解释性工具,用于区分不同类中的对象. 预测性建模:分类模型还可以用于预测未知记录的类标号. 二.解决分类问题的一般方法 分类法的例子包括决策树法、基于规则的分类法、神经网络、支持向量机和朴素贝叶斯分类法。 分类模型的性能根据模型正确和错误预测的检验记录计数进行评估,这些计数存放在称作混淆矩阵的表格中。准确性=正确预测数/预测总数。 差错率:错误预测数/预测总数。 三。决策树归纳 1。决策树工作原理 树中包换三种结点: 根结点:它没有入边,但有零条或多条出边。 内部结点:恰有一条入边和两条或多条出边。 叶结点:恰有一条入边,但没有出边。 其中,每个叶结点都赋予一个类标号,非终结点(包括根结点和内部结点)包含属性测试条件,用以分开具有不同特性的记录。一旦构造了决
策树,对检验记录进行分类就是直截了当的,从树的根结点出发,将测试条件用于检验记录,根据测试结果选择适当的分支,沿着该分支或者
达到另一个内部结点,使用新的测试条件或者达到一个叶结点,叶结点的类称号就被赋值给该检验记录。 2。如何建立决策树 对于给定的属性集,可以构造的决策树数目达指数级,找出最佳的决策树在计算上是不可行的,所以通常采用贪心算法,采取一系列局部最优
决策来构造决策树。Hunt算法就是其中一种。 *Hunt算法 Hunt算法通过将训练记录相继划分成较纯的子集,以递归方式建立决策树。 决策树归纳设计问题必须解决以下两个问题:如何分裂训练记录和如何停止分裂过程。 3。表示属性测试条件的方法 二元属性:二元属性的测试条件产生两个可能的输出。 标称属性:由于标称有多个属性值,它的测试条件可以用两种方法表示,多路划分和二元划分(如:CART方法) 充数属性:也可以产生二元或多路划分。 连续属性:测试条件可以具有二元输出的比较测试(A<v)或(A>=v),也可以是具有形如:vi<=A<vi+1来划分输出的范围查询。 4。选择最佳划分的度量 为了确定测试条件的效果,需要比较父结点(划分前)的不纯程度和子女结点(划分后)的不纯程度,它们的差越大,测试条件的效果就越好
。 5。决策树归纳的特点: *决策树归纳是一种构建分类模型的非参数方法。 *找到最佳的决策树是NP完全问题。 *已开发的构建决策树技术不需要昂贵的计算代价。 *决策树相对容易解释,特别是小型的决策树。 *决策树是学习离散值函数的典型代表。 *决策树对于噪声有良好的鲁棒性。 *冗余属性不会对决策的准确率造成不利的影响。 *存在着数据碎片的问题。 *子树可能在决策树中重复多次。 四。模型的过分拟合 分类模型的误差大致分为两种:训练误差和泛化误差。一个好的分类模型不仅要能够很好地拟合训练数据,而且对未知样本也要能准确地分类
。然而,对训练集数据拟合太好的模型,其泛化误差可能比具有较高训练误差的模型高,这就是所谓的模型过分拟合。 1。噪声导致的过分拟合 也就是训练集中有被错误分类的记录。 2。缺乏代表性样本导致的过分拟合 3。过分拟合与多重比较过程 要增加一个属性测试条件,是从候选的属性集中挑一个使得增益大于某个阈值的一个属性,这样算法就会在模型上增加一些欺骗性的结点,导
致过分拟合。 4。泛化误差估计 *使用再代入估计:假设训练数据集可以很好的代表整体数据,因而可以使用训练误差提供对泛化误差的乐观估计。 *结合模型复杂度:如前所述,模型越是复杂,出现过分拟合的几率就越高,因此我们更喜欢较为简单的模型。这种策略与Occam剃刀或节俭原
则一致,Occam剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取。 五。评估分类器的性能 1。保持方法:将被标记的原始数据划分成两个不相交的集合,分别称为训练集和检验集,在训练集上归纳分类模型,在检验集上评估模型的性
能。 2。随机二次抽样:可以多次重复保持方法来改进对分类器性能的估计。 3。交叉验证:每个记录用于训练的次数相同,并且用于检验恰好一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23