京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分类:基本概念、决策树与模型评估 分类任务就是确定对象属于那个预定义的目标类。就是通过学习得到一个目标函数f,把每个属性集映射到一个预先定义的类标号y. 一、预备知识 分类任务的输入数据是记录的集合,每条记录称为实例,用元组(x,y)表示,其中x是属性的集合,y是一个特殊的集合。 描述性建模:分类模型可以作为解释性工具,用于区分不同类中的对象. 预测性建模:分类模型还可以用于预测未知记录的类标号. 二.解决分类问题的一般方法 分类法的例子包括决策树法、基于规则的分类法、神经网络、支持向量机和朴素贝叶斯分类法。 分类模型的性能根据模型正确和错误预测的检验记录计数进行评估,这些计数存放在称作混淆矩阵的表格中。准确性=正确预测数/预测总数。 差错率:错误预测数/预测总数。 三。决策树归纳 1。决策树工作原理 树中包换三种结点: 根结点:它没有入边,但有零条或多条出边。 内部结点:恰有一条入边和两条或多条出边。 叶结点:恰有一条入边,但没有出边。 其中,每个叶结点都赋予一个类标号,非终结点(包括根结点和内部结点)包含属性测试条件,用以分开具有不同特性的记录。一旦构造了决
策树,对检验记录进行分类就是直截了当的,从树的根结点出发,将测试条件用于检验记录,根据测试结果选择适当的分支,沿着该分支或者
达到另一个内部结点,使用新的测试条件或者达到一个叶结点,叶结点的类称号就被赋值给该检验记录。 2。如何建立决策树 对于给定的属性集,可以构造的决策树数目达指数级,找出最佳的决策树在计算上是不可行的,所以通常采用贪心算法,采取一系列局部最优
决策来构造决策树。Hunt算法就是其中一种。 *Hunt算法 Hunt算法通过将训练记录相继划分成较纯的子集,以递归方式建立决策树。 决策树归纳设计问题必须解决以下两个问题:如何分裂训练记录和如何停止分裂过程。 3。表示属性测试条件的方法 二元属性:二元属性的测试条件产生两个可能的输出。 标称属性:由于标称有多个属性值,它的测试条件可以用两种方法表示,多路划分和二元划分(如:CART方法) 充数属性:也可以产生二元或多路划分。 连续属性:测试条件可以具有二元输出的比较测试(A<v)或(A>=v),也可以是具有形如:vi<=A<vi+1来划分输出的范围查询。 4。选择最佳划分的度量 为了确定测试条件的效果,需要比较父结点(划分前)的不纯程度和子女结点(划分后)的不纯程度,它们的差越大,测试条件的效果就越好
。 5。决策树归纳的特点: *决策树归纳是一种构建分类模型的非参数方法。 *找到最佳的决策树是NP完全问题。 *已开发的构建决策树技术不需要昂贵的计算代价。 *决策树相对容易解释,特别是小型的决策树。 *决策树是学习离散值函数的典型代表。 *决策树对于噪声有良好的鲁棒性。 *冗余属性不会对决策的准确率造成不利的影响。 *存在着数据碎片的问题。 *子树可能在决策树中重复多次。 四。模型的过分拟合 分类模型的误差大致分为两种:训练误差和泛化误差。一个好的分类模型不仅要能够很好地拟合训练数据,而且对未知样本也要能准确地分类
。然而,对训练集数据拟合太好的模型,其泛化误差可能比具有较高训练误差的模型高,这就是所谓的模型过分拟合。 1。噪声导致的过分拟合 也就是训练集中有被错误分类的记录。 2。缺乏代表性样本导致的过分拟合 3。过分拟合与多重比较过程 要增加一个属性测试条件,是从候选的属性集中挑一个使得增益大于某个阈值的一个属性,这样算法就会在模型上增加一些欺骗性的结点,导
致过分拟合。 4。泛化误差估计 *使用再代入估计:假设训练数据集可以很好的代表整体数据,因而可以使用训练误差提供对泛化误差的乐观估计。 *结合模型复杂度:如前所述,模型越是复杂,出现过分拟合的几率就越高,因此我们更喜欢较为简单的模型。这种策略与Occam剃刀或节俭原
则一致,Occam剃刀:给定两个具有相同泛化误差的模型,较简单的模型比较复杂的模型更可取。 五。评估分类器的性能 1。保持方法:将被标记的原始数据划分成两个不相交的集合,分别称为训练集和检验集,在训练集上归纳分类模型,在检验集上评估模型的性
能。 2。随机二次抽样:可以多次重复保持方法来改进对分类器性能的估计。 3。交叉验证:每个记录用于训练的次数相同,并且用于检验恰好一次。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22