京公网安备 11010802034615号
经营许可证编号:京B2-20210330

强强联合打造稀缺商业数据分析课程。本课程将世界客户关系管理方面的领导者美库尔公司 (Merkle Inc)在专业管理咨询方面的几十年的经验积累与CDA数据分析研究院的教学理念与方法相结合,归纳了在商业智能系统设计、客户画像、精准营销、生命周期价值管理等主题的课程。为实践者提供全面的使用R进行商业数据分析的解决方案。
一、课程安排
|
地点 |
课程 |
时间 |
讲师 |
报名 |
|
北京 |
R语言数据挖掘 |
5月28-29日,6月4-5日,11-12日 |
常国珍、翟辉 |
|
|
广州 |
R语言数据挖掘 |
5月28-29日,6月4-5日,11-12日 |
张良均 |
|
|
直播 |
R语言数据挖掘 |
5月28-29日,6月4-5日,11-12日 |
常国珍、翟辉 |
二、课程讲师
常国珍,北京大学商学博士,法学硕士。曾就职于亚信科技BOC部门、方正国际金融事业部、德勤管理咨询信息技术系统咨询部,SAS公司资深讲师,多家金融与互联网公司数据挖掘技术顾问。从事银行与电信行业操作与信用风险建模、产品精准营销、客户价值提升等数据挖掘项目。擅长基于客户行为分析的数据挖掘建模。研究方向为宏微观接合研究,兴趣点在于宏观环境变化对微观主体行为的预测与后果分析。
美库尔公司 (Merkle Inc):瞿辉,目前任职美库尔商务信息咨询公司资深分析师,中国科学技术大学统计学硕士。精通各类机器学习算法与主流分析工具,在保险、医药、零售以及电商等多个行业具有丰富的数据分析项目实践。在客户画像、用户分群、精确营销、销售预测、营销组合优化和多渠道广告归因等多方面有丰富经验。
张良均, 高级信息系统项目管理师,现为广州泰迪智能科技有限公司总经理,毕业于华中科技大学工学硕士,一直从事数据挖掘技术及其应用的策划和研发。《数据挖掘:实用案例分析》、《神经网络实用教程》主编,数据挖掘相关论文数十篇,专利近10项。广东工业大学、华南师范大学兼职教授。主导研发基于云计算的海量数据挖掘平台,获得SAS及SPSS数据挖掘认证,具有电力、电信、银行、水产养殖、制造企业、电子商务和电子政务的项目经验和行业背景。
三、课程大纲
|
CDAII-R:前沿营销与客户关系管理商业案例
|
|||
|
时间 |
课程 |
大纲简介 |
内容描述 |
|
第一阶段 |
R与统计语言基础 |
1.R语言基础 2.数据整合 3.描述分析与统计基础 |
掌握使用R进行 数据分析的关键技能。 |
|
第二阶段 |
商业智能(BI)分析系统实现 |
1.探索数据分析 2.绘图包 3.BI功能实现 |
数据分析的目的在于给业务决策提供依据。
|
|
第三阶段 |
数据清洗与转换 |
1.缺失值处理 2.噪声值处理 3.数据变换 4.数据归约 |
对数据清洗与转换进行详细的讲述。 需要用到描述性统计、决策树、聚类、主成分分析等方法。 |
|
第四阶段 |
客户分析与营销模型 |
1.客户画像 2.客户细分 3.精准营销 4.营销组合优化 |
根据客户的需求提供差 异化的服务,解决营销资源瓶颈。 需要用到描述性统计、决策树、聚类、因子分析等方法。 |
|
第五阶段 |
风险预测与检测模型 |
1.信用风险建模 2.欺诈建模 3.客户终身价值分析 |
本部分会涉及信用风险和操作风险建模的主要内容。 |
|
第六阶段 |
长尾理论与推荐系统设计 |
1.级联与流行 2.幂率与长尾理论 3.推荐系统设计 |
本部分是理论与技术的结合。 |
|
第七阶段 |
模型管理 |
1.模型生命周期 2.工作流设计 |
本部分内容讲解构建数据分析团队人员匹配, 排期管理,以及人、财、物的优化 |
四、案例节选:
一、商业智能(BI)分析系统实现
直观了解关键指标在全国的分布状况(交易额,交易量,客单价等)
销售额中贡献比例最大的客户是在什么年龄段,来自于什么区域?
近几年的销售状况如何,同比环比销售额趋势?
我们今年销售的明星产品和去年比发生了什么变化?
会员注册了之后多久会再回到柜台二次购买?

二、客户分析与营销模型
Q:基于客户的多维度的数据(大数据),从多个维度入手将客户分成若干群组,使得每组中的客户在特定的市场环境下对营销活动的响应行为是相似的,以便于我们进行精准化营销和高效的客户管理

五、最新优惠
1. 全日制学生及CDA LEVEL Ⅰ老学员8折优惠(学生证证明文件);
2. 同一单位三人及以上报名9折优惠,五人及以上8折优惠;
3. 老学员9折优惠;
4.报名任何一个专题可额外添加1500元获得另一个专题的全套视频。
六、关于证书
1. 参加由CDA协会和经管之家主办等级认证证书LEVEL II,考试通过可获得CDA LEVEL II建模数据分析师证书;
报考网址:http://exam.cda.cn/

2. 可申请工信部《数据分析师证书_高级》,申请费用400元(培训后即可得到)
七、在线报名
1.在线填写报名信息
2.给予反馈,确认报名信息;
3.网上缴费:
4.开课前一周发送电子版课件和教室路线图
八、咨询方式
——Join And Learn!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16