如何写数据分析报告 项目数据分析报告是通过对项目数据全方位的科学分析来评估项目的可行性,为投资方决策项目提供科学、严谨的依据,降低项目投资的风险,以下是总结的如何写出好的项目数据分析报告,希望对你 ...
2017-01-10数据分析师常见的分析思路 1.简单趋势 通过实时访问趋势了解产品使用情况,便于产品迅速迭代。访问用户量、访问来源、访问用户行为三大指标对于趋势分析具有重要意义。 2.多维分解 数据分析师可以根据 ...
2017-01-10真正的数据分析师都在做什么 数据分析在实际工作中的应用方方面面,小到Excel做表,大到数据化的决策指导。目前的形势,很少有公司有全面化的数据运营管理体系,导致有些从事数据分析的朋友觉得工作只局限于做 ...
2017-01-10数据挖掘经典案例 当前,市场竞争异常激烈,各商家企业为了能在竞争中占据优势,费劲心思。使用过OLAP技术的企业都知道,OLAP技术能给企业带来新的生机和活力。OLAP技术把企业大量的数据变成了客户需要的信息, ...
2017-01-09关于数据挖掘关联规则的Oracle实现 前几天拿到了数据挖掘基础教程一书,感觉部分算法是基于统计学的原理的,而统计学是可以通过Oracle来实现。 其次是为了观看德国vs西班牙的世界杯比赛,来了一点小小的兴致 ...
2017-01-09不会这4项数据分析标准,何谈精细化运营 一、明确数据分析的目的 1、如果数据分析的目的是要对比页面改版前后的优劣,则衡量的指标应该从页面的点击率,跳出率等维度出发,电商类应用还要观察订单转化率,社 ...
2017-01-09掌握4个有效的数据分析要点,切实解决用户痛点 在互联网的下半场,不断精细化运营的背景下,产品经理不再是单纯的靠感觉来做产品,更需要培养数据的意识,能以数据为依归,来不断改善产品。不同于公司专业的数 ...
2017-01-09数据分析中要注意的统计学问题 (一、均值的计算 在处理数据时,经常会遇到对相同采样或相同实验条件下同一随机变量的多个不同取值进行统计处理的问题。此时,往往我们会不假思索地直接给出算术平均值和标准 ...
2017-01-09大数据分析学习之路 一、大数据分析的五个基本方面 1,可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够 ...
2017-01-09大数据分析普遍存在的方法及理论有哪些? 现在越来越多的应用涉及大数据,只有通过对大数据的分析才能获取智慧、深入及具价值的信息。大数据拥有四个V的特点:数量(Volume)、速度(Velocity)、多样性(Vari ...
2017-01-08大数据分析软件包含哪些技术? 所谓大数据不仅体现在数量上的庞大,还有涉及到的方面比较广泛,以及计算过程比较的庞大而高效等,大数据分析能够从海量的数据中提取出最有效的信息,在企业的营销中发挥关键性的 ...
2017-01-08如何训练数据分析师的思维能力呢? 一提到数据分析师这个职业,想必思维是被提及最多的一个词。这可能跟数据分析需要动用脑子、思考多,沟通理性有很大关系,让大家感到的错觉。 其实,每个工作都需要用 ...
2017-01-08近些年,互联网公司对数据分析师岗位的需求越来越多,这不是偶然。 过去十多年,中国互联网行业靠着人口红利和流量红利野蛮生长;而随着流量获取成本不断提高、运营效率的不断下降,这种粗放的经营模式已经 ...
2017-01-08不少人后台问我,如何转行做数据分析师,或毕业生怎样入行。我之前的文章都是围绕硬技能来写,这次以我知乎上的一篇答案为基础谈一下软技能。权当做杂谈。 我进入互联网行业完全是零基础,不是数据分析零 ...
2017-01-08数据的无量纲化处理和标准化处理的区别是什么 请教:两者除了方法上有所不同外,在其他方面还有什么区别? 解答: 标准化处理方法是无量纲化处理的一种方法。除此之外,还有相对化处理方法(包括初值 ...
2017-01-07如何用spss进行效度检验 有没有效度检验的操作? 效度验证对于量表而言。有很多啊,内容效度的判断主要是你的项目来源,如果来自于信效度很好的量表或者经过专家评判说明具有较好的内容效度。然后是结构效 ...
2017-01-07转行数据分析师必学技能 第一步:统计概率理论基础 这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其 ...
2017-01-07数据分析与数据挖掘,你了解多少 1.数据挖掘与数据分析在实际工作中,真的有很大区别甚至是区别吗?我知道一些定义,比如数据分析偏重于统计,而数据挖掘的工作是分类,聚类,是信息的提炼,但是实际工作中是不 ...
2017-01-07学数据分析有没有前途 数据分析这个行业想要追逐经济发展潮流是很容易,对于现在的企业发展而言,数据将成为更为重要的核心资产,而IT设备不再重要。为什么企业将数据放在第一位,将IT数据放在第二位。 ...
2017-01-07数据分析常用的图表方法有哪些 数据分析是一个比较注重结果的工作,数据分析结果的展现直接反映一个数据分析师工作的成效。最常用的的数据分析结果展现方法就是图标展现,既客观又有说服力。经小编整理,常用的 ...
2017-01-07在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28